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Abstract 

This paper proposes an agent-based simulation model to study the biomass supply contract pricing and 

policy making in biofuel industry. In the proposed model, the agents include farmers and a biofuel 

producer. Farmers’ decision making is assumed to be profit driven, which is formulated as a mixed-

integer optimization model, and the biofuel producer’s pricing decision is represented with a linear 

equation with an objective to maximize profits. A case study based on Iowa has been developed to 

analyze the interactions between stakeholders and assist determination of the optimal pricing equation for 

the biofuel producer. Simulation results show that under such a pricing strategy, the biofuel producer can 

achieve higher profitability than using a fixed price. The impact of government environmental regulations 

on farmers’ decision making and biomass supply has also been analyzed, and managerial insights have 

been derived.  

Keywords 

Corn; switchgrass; optimization; linear pricing equation; agent-based simulation; soil erosion tolerance 

 

1. Introduction 

Revised Renewable Fuel Standard (RFS2) mandated that 16 billion gallons of cellulosic biofuel should be 

produced and consumed annually by 2022 (U.S. Environmental Protection Agency 2013). Significant 

challenges exist to reach this target, such as the design of the advanced biofuel supply chain. The design 

and optimization of biofuel supply chain can be classified into five major components: biomass 

production system, biomass logistics system, biofuel production system, biofuel distribution system and 

biofuel end-use (Yue, You, and Snyder 2014). Farmers play a significant role in the biomass production 

process therefore smooth interactions and coordination between farmers and biofuel producers are 

essential to the successful deployment of an effective biofuel supply chain.  
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Biofuel producers are the other major player in the biofuel supply chain. Biofuel producers are 

generally profit driven and their behaviors are typically represented with profit maximization models. In 

this paper, the decision making mechanism of the biofuel producers is represented with a profit 

maximization function, in which the contract prices are the decision variables. It should be noted that as a 

contribution of this study, we can accommodate variable contract price for individual farmers, which is 

typically not considered in the literature. The contract pricing equation is motivated by determination of 

bank loan contract which is a linear function of the bank’s quote and the customer’s responding price 

(Grinblatt and Titman 1983). In this paper, biomass contract prices are assumed to depend on farm 

productivity and contract period length.  

For biofuel producers’ decision making, there are several types of biomass supply contracts. For 

instance, DuPont provides two contract options to farmers for corn stover collection. Farmers can sell the 

corn stover at their field or at the gate of biofuel refinery with different prices (DuPont 2015). We 

consider one type of contract where the biofuel producers rent land from farmers and collect biomass 

themselves. In other words, the farm owners collect the land rent and the biofuel producers take care of 

everything else, including planting, harvesting, and transporting the biomass to the production facilities. 

In addition, we adopted a flexible pricing strategy which is enabled by the contract pricing equation that 

offers different rent payment for different farmers. This flexibility has proven to result in improved 

profitability.  

Farmers’ communities have different responses under different formulations of the pricing 

equation. In other word, different pricing strategies result in different market outcome. Determining the 

optimal pricing strategy becomes challenging when the number of farmers grows, and simulation tools 

are introduced into modeling to overcome the difficulty. For instance, Valenzuela, Thimmapuram, and 

Kim (2012) analyzed the impacts of dynamic pricing on electricity market performance based on an 

agent-based simulation model. Similar methodologies are applied to biofuel supply chain analysis and 

optimization in this paper. The difference between power and biomass market is that for all target 

customers the electricity price is the same, however contract prices for each farmer can be different due to 

different characteristics of their farms and their attitude. 

Simulation models can offer analysis tools and prediction methods to agricultural decision 

making at farm scale (García-vila and Fereres 2012) and localized farming communities (Ng et al. 2011). 

However, a single farmer’s behavior or localized farming communities have limited impact on the biofuel 

supply chain. Hence analysis on farmers’ behavior should be based on a large number of farmers so that 

group behaviors and impacts on the supply chain can be observed. It should be noted that number of 

stakeholders analyzed in the existing literature was limited and the true group behavior could not be 
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observed. Bai, Ouyang, and Pang (2012) designed a biofuel supply chain with 10 farms, 10 candidate 

refinery locations and 10 local grain markets. Similarly Zhang et al. (2013) studied a biofuel supply chain 

with 3 farmers, 4 biofuel producers and 5 blenders. Limit on number of stakeholders especially the 

farmers weakened the validity of supply chain analysis, because in reality interactions between a single 

farmer and a downstream stakeholder does not affect the macroscopic supply chain behavior significantly. 

Therefore, it is essential to consider a large number of stakeholders’ interactions simultaneously.  

Agent-based simulation has been employed to study the group behavior in agricultural systems in 

the literature because of its advantages argued by Berger (2001), especially on the capability of capturing 

interactions between stakeholders. Former researchers usually adopted agent-based model to observe the 

outer effect on the researched objects, rather than emphasizing the interactions between origins of the 

effect and researched objects (Berger and Schreinemachers 2006; Berger and Troost 2014; Happe et al. 

2009; Troost, Walter, and Berger 2015). Such interactions are the major motivation of this paper. In this 

paper, an agent-based simulation model is formulated, in which farmers make individual decisions based 

on their own decision making criteria and mechanism. The farmers’ decisions are collected, aggregated, 

and transitioned to the biofuel producer. With this information, the biofuel producer can adjust biomass 

contract pricing strategy. In turn, farmers can change the farming decision for next year. This dynamic 

process will continue until an equilibrium has been reached between the groups of stakeholders. 

Generally these agent-based models could all be classified into Bio-economic farm models since they 

were developed to enable assessment of policy changes and technological innovations (in our case it is 

bioenergy crop adoption) (Janssen and Ittersum 2007). 

Decision making mechanism of farmers is complicated to model since there are multiple 

impacting factors involved. Reimer et al. (2014) pointed out that farmers’ decisions are difficult to model 

since a variety of factors can contribute to a farmer’s decisions and often with uncertainties. In practice, 

factors included in a farming decision making model are limited. Typically, researchers assume that all 

farmers are rational and analyze their behaviors with economic models with a profit maximization 

objective. For example, Willock et al. (1999) conducted a qualitative study on farmers’ attitudes and 

behaviors in farming and claimed that generally profit or production maximization is the main objective 

of a typical farmer’s farming practice. Similarly, in this paper, farmers are assumed to be profit driven in 

the basic scenario. However, in reality, farmers may not always be purely profit-driven. In addition, 

conservation and environmental concerns contribute to the farmers’ decision making. Lynne and Rola 

(1988) argued that income alone was not a significant predictor of conservation behavior, but a positive 

attitude about the environment was also required. Growing concerns on environmental impact in farmers’ 

community affects farmers’ behavior, and one evidence is that from 1982 to 2007 soil erosion rate 
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dropped from 4.0 tons to 2.7 tons per acre in US (Duffy 2012). Therefore, in this study, soil erosion has 

been selected as a representative environmental concern for farmers. With additional environmental 

regulation from government, farmers’ decision making could be impacted significantly. In this paper, it is 

shown that mild regulations can motivate the adoption of bioenergy crops and an aggressive policy 

regulation can significantly impact/alter the current farming practice.  

There have been increasing interests in incorporating complicated decision making models into 

simulation platforms. Almeder, Preusser, and Hartl (2009) incorporated discrete-event simulation with 

mixed-integer linear programming for supply chain design and planning. Data were transmitted between 

the simulation platform and the optimization model solver via a database. Frequent data transmission 

between different platforms consumes significant computing time and resources, and thus creates 

challenges when the model is applied to real world scale. One alternative is to incorporate optimization 

solvers into the simulation platforms to accommodate larger scale model. In this paper, we chose a Java-

based simulation platform which can enable the CPLEX solver within the simulation platform.    

The remainder of this paper is organized as follows: the mathematical decision making model of 

farmers is formulated in Section 2 and biofuel producers’ decision making is modeled in Section 3. The 

agent-based simulation model is introduced in Section 4. The case study and analysis of the results are 

presented in Section 5, and the scenario with environmental policy regulation is discussed in Section 6. 

The paper concludes with a summary of research findings in Section 7. 

 

2. Farmers’ Decision Making Model 

Optimization models are good tools to simulate decision makings if the decisions are made based on 

various factors (Buysse, Huylenbroeck, and Lauwers 2007). A farmer’s decision making is represented 

with an optimization model with an objective of farming profit maximization. By applying such a model 

to each farmer, farmers’ macroscopic response on biomass contracts from the biofuel producers can be 

analyzed. 

There are several bioenergy crops to choose to produce biomass, and several business types exist on 

biomass supply. The model we describe is for a special case, that farmers rent out land to the bioenergy 

producer, and the producer plant switchgrass (Panicum virgatum) on this land. To simplify the model, we 

choose corn (Zea mays) as the representative row crop that farmers usually plant. Therefore, farmers 

make a decision on area and period between planting corn and switchgrass.  
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2.1 Notations 

Table 1 Notations in farmers’ decision making model. 

Decision variables 

 xk
W Land area of switchgrass that a farmer decides to plant for k years. 

xC Land area for corn 

tk
W Binary variable. Equals to 1 if switchgrass is planted for k years.  

Parameters  

n Length of decision horizon (years) 

k Contract length, k = 3,4,…,n 

pk
W Land rent of a k-year contract for switchgrass 

PC
 Price of corn ($/bushel)  

RC
 Yield of corn (bushel/acre) 

c Unit farming cost of corn ($/acre) 

A Land area of a farm (acres) 

 

2.2 Model Formulation 

Farmers are assumed to be profit-driven. Profit maximization serves as the objective function as 

illustrated in (1). 

max
xk

W,xC
∑ kpk

Wxk
W

k

+ (PCRC − c) ∑(n − k)

k

xk
W + n(PCRC − c)xC (1) 

In this objective function, the first term ∑ kpk
Wxk

W
k represents the profit a farmer can make by renting out 

land for switchgrass planting for k years. Since farmers make one-time decision for the following years, 

only one xk
W is permitted to be positive for all possible k. The second term (PCRC − c) ∑ (n − k)k xk

Wis 

the profit from growing corn in the xk
W acres of land in the rest (n − k)years, and the unit profit of 

planting corn per acre is (PCRC − c). The third term is the profit from planting corn in xC acres of land in 

the entire planning horizon.  

Equation (2) and (3) refers to the one-time decision of farmers. Each farmer can choose at most 

one bioenergy contract to sign, in addition to the choice of growing corn for the entire farm. By these two 
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constraints, for all possible k, at most one tk
W equals to 1, and only the corresponding xk

W can be greater 

than 0. Equation (4) represents each farmer’s land limit constraint. Switchgrass is usually planted for 

around 5 years. In this model, we assume that contract length options are 3, 4, 5 and 6 years. 

∑ tk
W

k

≤ 1,   ∀k (2) 

xk
W ≤ Mtk

W,   ∀k (3) 

xk
W + xk

C ≤ A,   ∀k (4) 

xk
W ≥ 0,   ∀k (5) 

xC ≥ 0 (6) 

j,k ∈ {3,4,5,6} (7) 

tk
W ∈ {0,1},   ∀k (8) 

Equations (1) to (8) represent the farmers’ decision making model, which is a typical mix-integer linear 

model that can be solved with CPLEX. 

 

3. Decision Making Model for Biofuel Producers 

Biofuel producers’ decision making model consists of a contract pricing strategy equation and a profit 

maximization function as the objective.   

3.1 Notations 

Table 2 Notations of biofuel producer’s decision making model. 

Decision variables 

a Weight of land productivity in the contract pricing equation  

b Weight of contract period length in the contract pricing equation   

c Contract price baseline in the contract pricing equation  

Auxiliary variable 

pi
W Contract price for farmer i ($/acre) 

Parameters  

ti
W Length of contract for farmer i (years)   
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xi
W Area of switchgrass land from farmer i (acres)  

Ri
C

 Yield of corn for farmer i (bushel/acre) 

g Yield ratio of switchgrass vs. corn  

PE
 Wholesale ethanol price ($/gallon) 

CE Unit production cost of cellulosic ethanol ($/gallon) 

M0
O Operation and management cost of a cellulosic ethanol facility ($ million) 

M0
E Total production cost for a cellulosic ethanol facility ($ million) 

YE Unit yield of cellulosic ethanol from biomass (gallons/ton) 

 

3.2 Biofuel Producers’ Contract Pricing Equation 

For each farmer i, biomass supply contract price is defined by Equation (9). 

pi
W = aRi

C + bti
W + c (9) 

Where a, b and c are the decision made by the biofuel producer and they are all positive. 

Yield of switchgrass are assumed to be proportional to corn. For instance, the ratio of switchgrass and 

corn grain yields (measured in weight) is assumed to be 1:1 (Bonner et al. 2014). The biofuel producer 

expect that farmers can contribute productive lands to switchgrass farming such that more biomass can be 

supplied. Besides, the biofuel producer also wants the supply to be stable, therefore long contracts are 

encouraged. Positive coefficients in pricing equation (9) reflected these considerations hence farmers who 

rent out more productive lands and sign longer contracts would receive higher contract prices.  

3.3 Biofuel Producers’ Profit Function 

Biofuel producers aim to maximize the profits over the n-year planning horizon as illustrated in (10).  

max
pi
W

 PEYE ∑ gRi
Cti
Wxi

W

i

−
M0

O

M0
E
CEYE ∑ gRi

Cti
Wxi

W

i

− ∑ pi
Wti

Wxi
W

i

 (10) 

The term ∑ gRi
Cti
Wxi

W
i is the total amount of biomass collected over the n-year planning horizon. 

Therefore the first term PEYE ∑ gRi
Cti
Wxi

W
i in Equation (10) is the biofuel producer’s revenue by selling 
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cellulosic ethanol, and the second term 
M0

O

M0
E C

EYE ∑ gRi
Cti
Wxi

W
i  represents the operation and management 

costs for biofuel production. The last term ∑ pi
Wti
Wxi

W
i is the total land rent cost paid to the farmers. In the 

Iowa case study, the parameters in equation (10) are based on Wright and Brown (2007). 

The interrelationship of biofuel producers’ pricing strategy and the consequences are visualized 

as a causal loop in Fig.1. A positive sign means variables connected by the arrow are positively correlated 

and vice versa. As a result, high contract price results in high production costs and low contract price 

results in the lack of biomass feedstock. Therefore, it is the biofuel producers’ motivation to find the 

optimal pricing strategy for contract to achieve maximum profitability.  

 

Fig.1. Causal loop of biofuel producers’ pricing strategy 

When the contract price is low, few farmers would devote their land for switchgrass. As the contract 

prices increase, more farmers will start to work with the biofuel producer. However, this trend will not 

keep. When the contract prices increase to a threshold, higher land rent costs would counteract the 

increasing revenue and the net profits would be reduced to zero. Therefore, there exists a pricing equation 

in the form of Equation (10) that maximize the profits of the biofuel producer. 

 

4. Agent-based Simulation 

It should be noted that there exists a dynamic interaction process between the biofuel producers and the 

farmers. Theoretically this interaction/relationship can be formulated as a bi-level optimization model in 

which the biofuel producer is the upper level and farmers are lower level. However, due to the large 

number of farmers involved, the lower level farmers’ decision making problems become intractable. 
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Therefore, simulation methods have been employed in the study to identify the right pricing strategy for 

biofuel producers. In the agent-based simulation model, each farmer has individual decision making 

mechanism as well as the biofuel producer. They are all represented with independent agents in the agent-

based simulation model with interactions between them.  

Fig.2 provides an overview of the agent-based simulation model and the interaction between the 

farmers and biofuel producers. There are multiple farmers and each farmer makes independent decisions 

based on the mechanism described in Section 2. The biofuel producer offers contracts to farmers and 

farmers make decisions. Based on farmers’ responses, the biofuel producer can evaluate the profitability 

and adjust the contract pricing strategy.  

Biofuel Producer

Farmer 1

Market

Farmer 3Farmer 2

pC, R1
C pC, R2

C pC, R3
C

x1
W x2

W x3
Wp1

W p2
W p3

W

 

Fig.2. Agent-based simulation model overview 

By testing different combinations of pricing parameters (a, b, and c) iteratively in the simulation model, 

the optimal contract pricing strategy can be identified. The iterative process is illustrated in Fig.3.  
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Start

Contract prices are calculated 

according to (a,b,c) for each farmer

Farmers make decisions under 

given contract prices and other 

information

Collect farmers  responses and 

calculate profit

Better than 

incumbent profit?

No

Yes

Update incumbent 

optimal profit

Yes

Stop

No

Set incumbent optimal profit to 0.

Pick the first combination of (a,b,c)

Pick the next 

combination of 

(a,b,c)

All combinations of 

(a,b,c) picked and 

tested?

 

Fig.3. Iteration process in determining the contract pricing strategy 

The agent-based simulation model is implemented in AnyLogic, which is based on JAVA. The CPLEX 

package is added into AnyLogic platform as a dependent JAVA package. Hence the optimization models 

can be solved with CPLEX directly inside the agent-based simulation model, instead of relying on 

external database for dynamic parameter transmission (Almeder, Preusser, and Hartl 2009). Consequently, 

the computation resource can be saved, which can facilitate the solution of agent-based simulation with 

more agents along with more complicated decision mechanisms. 

 

5. Case Study  

The case study for a farming community in Iowa is detailed in this section. There are 100 farmers and one 

biofuel producer in the case study. Farmers make decisions between planting corn themselves or rent land 

to the biofuel producer for switchgrass. Farmers’ farming characteristics including farm area and land 

slope are based on the survey results of (Tyndall 2009) and data from AgSolver©.  

5.1 Data Sources  

The data sources for this case study are detailed in Table 3. 
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Table 3 Parameters in the case study.  

 Parameter Value Source 

n 

Length of decision/planning 

horizon (maximum single 

switchgrass contract period) 

6 years (Jung and Lal 2011) 

PC Corn price N(3.60, 0.15)  ($/bushel) (USDA 2015) 

RC Corn yield N(170,10)  (bushel/acre ) 
(Iowa State University 

Extension and Outreach 2015b) 

g  
Ratio of Switchgrass and Corn 

grain yield 
0.0254 (bushel/ton) (Bonner et al. 2014) 

c  Unit corn farming cost N(355,30) ($/acre) 
(Iowa State University 

Extension and Outreach 2015a) 

PE
  Wholesale ethanol price $1.47/gallon 

(Iowa Department of 

Agriculture 2015) 

CE 

Cellulosic ethanol unit 

conversion cost (excluding 

biomass feedstock cost) 

$1.76/gallon (Wright and Brown 2007) 

M0
E 

Total production cost for a 

cellulosic ethanol plant 
76 ($ million) (Wright and Brown 2007) 

M0
O 

Operation and management  

costs for a cellulosic ethanol 

plant 

11.1 ($ million) (Wright and Brown 2007) 

YE Yield of cellulosic ethanol 
79 gallon per ton of 

biomass 
(Thorp 2007) 

A Farm land area 
Exponential (0.0045,0) 

(acres) 
(Tyndall 2009) 

 

Pricing parameter a, b, and c are sampled according to Table 4. The ranges are estimated according to 

current and potential switchgrass land rent contracts to provide realistic estimates/results. 
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Table 4 Sampling range and step size of the pricing parameters. 

Pricing Parameter Sampling Range Step size 

a [0.4,1.2] 0.2 

b [10,20] 1 

c [60,120] 20 

There are 220 possible sampling scenarios which are simulated in the agent-based simulation model.    

5.2 Optimal Profit 

The simulation model is run for multiple times and Fig.4 reflects how biofuel producer’s profit fluctuate 

with respect to the unit land rent price. 

 

  Fig.4. Relationship between land rent and profits  

It can be observed that the optimal profits would increase initially but then decrease with increasing rent 

payment. The maximum profit achieves when the average price is around $300/acre. Currently the 

switchgrass contract price in Iowa is about $260/acre for all farmers. The following section includes the 

comparison of strategies of constant pricing vs. flexible pricing. 
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5.3 Comparison of Constant vs. Flexible Pricing 

The constant pricing and flexible pricing strategies have been compared in this section. We firstly run the 

model based on the constant land renting price, which is $260/acre currently adopted biofuel producers in 

Iowa. Then we enable the biofuel producer to adopt the flexible pricing strategy by the pricing equation. 

Each case is run for 30 times (determined by tolerable computation time) and the profits of the two 

scenarios were analyzed. In Fig.5 the prices are sorted and plotted against their quantiles. It can be 

observed that the prices in both cases are normally distributed. We proceed a Welch’s t-test as Table 5 to 

test the hypothesis that the pricing equation really improved the profitability. The results confirm that 

there is a significant difference between the profits with two pricing strategies, and the flexible pricing 

strategies can generate 22% more profits for the biofuel producer.      

 

Fig.5. Comparison of constant vs. flexible pricing strategies 
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Table 5 Welch’s t-test on profits. 

Sample Mean 
Standard 

Deviation 
d.f. t Statistic 

p-value  

(one-tail) 

Constant 

pricing 
5757464 257855 

55.59 1.74 0.02 
Flexible 

pricing  
7048742 2087165 

 

6. Environmental Regulation Analysis  

Under environmental regulations on land applications, farmers will have to take additional factors other 

than profitability into considerations when they make farming decisions. In this study, impact of 

environmental regulations is incorporated into farmer’s decision model as an additional constraint on the 

limit of soil erosions. 

Table 6 Notations in environmental regulation scenario. 

rW Soil erosion rate of switchgrass (ton∙ha-1∙y-1) 

rC Soil erosion rate of corn (ton∙ha-1∙y-1) 

T Tolerable soil loss rate (ton∙acre-1∙y-1) (Known as “T value”) 

s Land slope of a farm (%) 

s0 Standard land slope  

α Slope of regression line   

β Intercept of regression line 

G Soil loss in a n-year period (ton) 

Among various environmental impact indices, soil erosion has been chosen as the representative regulator 

for two reasons. Firstly, most farmers have concern about soil erosion. Based on a survey in Iowa 

(Arbuckle et al. 2010), 86.3% of the farmers believe that soil erosion is a “moderate important”, 

“important” or “very important” issue. Planting corn vs. switchgrass results in different degree of soil 

erosion, which could influence farmers’ decision making in their farming practices. Secondly, soil erosion 

has been studied extensively hence sufficient information is available to ensure the validity of our model. 
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Erosion cause by different crops can be calculated by the product of erosion rate of the crop and crop 

area. Smeets and Lewandowski (2009) applied the Universal Soil Loss Equation (Wischmeier and Smith 

1978) as illustrated in Equation (11) to estimate the soil erosion rate for different types of crops. 

r = RKLSCP (11) 

Under the same climate and geographical conditions, R (rainfall and runoff factor), K (soil erodibility 

factor), L (slope length factor), and P (support practice factor) are the same. Different crop type results in 

different values of C (cover and management factor). All these factors are difficult to quantify for a 

certain farm, but we can estimate r by S, which is the slope gradient factor calculated using Equation (12). 

S = 0.065 + 0.045s + 0.0065s2 (12) 

Where s is the land slope gradient (%), and the value is easy to acquire. 

We can observe that it fits into a straight line within the range of interest by plotting the slope gradient 

factor S against land slope gradient s as illustrated in Fig.6. A linear regression model is adopted to 

simplify the model and the results are shown in Table 7. The linear dependence is significant.  Therefore, 

we can infer that for one type of crop, the land slope s is linearly positive to soil erosion rate r within the 

range of interest.  
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Fig.6. Relationship between the land slope factor and land slope 

Table 7 Liner regression analysis of slope factor of erosion with 95% confidence level. 

 Estimate Std. Error t-value p-value 

Intercept β 6.499e-02 3.580e-06 18154.1 <2e-16 

Slope α 4.565e-02 6.051e-05 754.4 <2e-16 

Multiple R-squared:      ≈1 Adjusted R-squared:      ≈1 

 

The linear dependence between S and s can be written in Equation (13), where α and β represent 

the regression slope and intercept respectively. Assuming that same crop is planted in two farms with all 

the same conditions except for land slope, the ratio of their soil erosion rate r1 r2⁄  will be the same the 

ratio of slope gradient factor 𝑆1 𝑆2⁄ , which can be calculated in Equation (14).  

S = αs + β (13) 

r1

r2

=
S1

S2

=
αs1 + β

αs2 + β
 (14) 

Smeets and Lewandowski (2009) calculated standard soil erosion rates of various crops, including the soil 

erosion rate of corn 𝑟0
C and soil erosion rate of switchgrass 𝑟0

W, based on a standard slope s0 (4%). Such 

s 

S 
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rates can be used as the baseline to estimate erosion rates in different conditions. With the land slope s, 

the soil erosion rates can be estimated for planting switchgrass and corn by using Equation (14), resulting 

in Equation (15) or (16) respectively. 

rW =
αs + β

αs0 + β
𝑟0

W (15) 

rC =
αs + β

αs0 + β
𝑟0

C (16) 

Over n-year planning horizon, the total soil loss Gk can be calculated by Equation (17). It should be noted 

that this Equation (17) accommodates the various farming decisions made by the farmer. 

Gk =
αs+β

αs0+β
[𝑟0

Wxk
W + (n − k)𝑟0

Cxk
W + n𝑟0

CxC],       ∀k (17) 

As a motivation for environmental regulation, to prevent unsustainable soil utilization, the erosion rate 

should be less than the soil recovering rate, known as “T value” (Montgomery 2007). Over the n-year 

planning horizon, it is assumed that the total soil loss G  should be controlled below a tolerance threshold, 

which equals to nAT, as Equation (18), where A is the land area and T is the “T value”.  

Gk ≤ nAT,       ∀k (18) 

To accommodate the flexibility of farming regulations, government may allow some slackness on the 

regulation. Therefore, Equation (18) can be relaxed by incorporating a slack parameter γ and become 

Equation (19), which is the environmental regulation to farmers. The slack parameter is named “Erosion 

Tolerance Index”. γ equaling to 1 means farmers must strictly control the soil erosion under the theoretic 

tolerance threshold, and larger γ means more relaxation on this regulation. 

Gk ≤ γnAT,       ∀k (19) 

By implementing constraint (19) into farmers’ decision making model (1) to (9), farmers may adopt 

bioenergy planting decisions, especially for the farmers with big-sloped land.  

The farmers’ decision making model considering environmental regulations was analyzed in the 

agent-based simulation model. The major modeling parameters were obtained from literatures and listed 

in Table 8. The soil erosion rates were inferred according to (Smeets and Lewandowski 2009). An annual 

precipitation of 35.67 inch (906.018 mm) was estimated for Iowa. Fig. 7 illustrates the relationship 

between the soil erosion rates and annual precipitation amount. 
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Table 8 Additional parameters for the erosion tolerance constraint. 

𝑟0
C 

Standard soil erosion rate of 

corn (land slope = 4%)  
40 ton/ha per year 

(Smeets and Lewandowski 

2009) 

𝑟0
W 

Standard soil erosion rate of 

switchgrass  

(land slope = 4%) 

10 ton/ha per year 
(Smeets and Lewandowski 

2009) 

T Tolerable soil loss rate  5 ton/acre per year (Montgomery 2007) 

s Land slope of a farm U(0, 10) (%) AgSolver© 

 

 

Fig.7. Soil erosion rate vs. rainfall 

To analyze the impact of the stringent level of government regulations, the agent-based simulation model 

was analyzed under a variety of Erosion Tolerance Index γ. The relationship between the soil erosion 

tolerance index and contract prices has been illustrated in Fig. 8 and the relationship between the soil 

erosion tolerance index and farming profits has been illustrated in Fig. 9.  
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Fig.8. Erosion Tolerance Index vs. average price 

 

 

Fig.9. Erosion Tolerance Index vs. optimal profit 

It can be observed that, when the Erosion Tolerance Index is larger than 1.5, governmental regulation has 

little effect on farmers’ farming activity since the constraint would not be active. However, when the 

index drops below 1.5, it starts to affect farmers’ and the biofuel producers’ decision making 

significantly. Stricter regulations bring more profits the producer because when the environmental 

regulation becomes stringent, more farmers would choose to convert the land from corn farming practice 
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to switchgrass. This is beneficial for the biofuel producers due to the potential lower land payment. 

Therefore, designing the right/optimal environmental regulations is of prominent importance considering 

the welfare of both the farmers and biofuel producers. 

 

7. Conclusions 

In this study, an agent-based simulation model has been formulated to study the biomass supply 

component in the biofuel supply chain. The two main stakeholders include farmer and biofuel producers. 

Each stakeholder is represented with an agent in the model. Farmers and biofuel producers make 

independent decisions based on their own decision making mechanisms. The interactions between the 

farmers and the biofuel producer have been explicitly addressed with the agent-based simulation 

framework which serves as the major contribution of this study. In addition, individual farmer’s decision 

making is represented with an optimization model. The biofuel producers’ decision making is represented 

with a flexible pricing strategy and profit maximization objective. The linear pricing equation for biofuel 

producer can facilitate the flexibility of the contract pricing strategy.  

To demonstrate the proposed analytic framework, the agent-based simulation model is applied to 

a case study based on a farming community in Iowa. For the biofuel producer, the optimal pricing 

strategy/equation is identified by sampling pricing parameters and evaluating the performance in an 

agent-based simulation model, which aim to assure the optimality of such a flexible pricing strategy. The 

numerical results in the case study shows that the flexible pricing equation can bring significantly more 

profits to biofuel producers comparing to a constant price strategy which is currently been adopted.  

Motivated by the environmental concerns on farming practice, we propose a framework to assess 

and analyze environmental regulations. This is done by incorporating additional constraints on 

environmental indicator. In the case study, a linear constraint representing soil erosion has been 

incorporated. It has been shown that more stringent government regulation is more beneficial to biofuel 

producers than the farmers. When the government imposes environmental regulations to farmers, more 

land will be contributed to bioenergy crops. However, designing appropriate environmental policy should 

consider the welfare of both the farmers and the biofuel producers. 

Another contribution of this study is on the solution techniques. Typically, the combination of 

optimization and simulation models are utilized in problems with relatively small scale due to 

computational issues. However, in real life, the number of stakeholders has to be big enough to reflect the 

interactions between them. In this paper, the simulation framework and optimization model are 
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implemented by incorporating an optimization solver directly in the simulation platform. This can 

significantly save the computational resources devoted to data transmission. This paper aims to shed some 

lights on the integration of the optimization models and simulation framework. 

It should be noted that this research is subject to a few limitations which suggest future research 

directions. First, the game between farmers and the biofuel producer is simplified, which might lead to 

bias in describing the real situation. For instance, stakeholders including blenders and customers are 

effective in the market and they could be incorporated to achieve a more comprehensive analysis. 

Secondly, this study focuses on the governmental regulation analysis to test the flexibility to 

accommodate scenario analysis beyond base case; however, there are other types of scenario or sensitivity 

analysis that can be conducted. For example, the oil price fluctuation in 2015 significantly influenced the 

bioenergy industry through fluctuation in the revenue hence such an influence could also lead to change 

on farmers’ attitude towards adopting bioenergy crops. Thirdly, in order to realistically analyze and guide 

the development of biofuel industry, market components including competition between biofuel and fossil 

fuel can be included in the supply chain model. In summary, this study aims to study the biomass supply 

component in the biofuel supply chain and contribute to the biomass contract design and governmental 

regulation analysis. However, there exist significant challenges in the implementation of this modeling 

framework when more factors and perspectives are incorporated. Research on solution techniques and 

computational efficiency should be conducted, and we reserve these for our future research. 
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