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stable dielectric constant along with extremely low loss tangent (Fig. 4), the minimal dimension 

change under electric field revealed in Fig. 7 and 8 would definitely be helpful in suppressing 

mechanical failure and extending service life time. 

The small signal piezoelectric coefficient d33 is displayed in Fig. 9. Consistent with 

microstructural analysis, dielectric properties and electromechanical measurement results, the 

changes in the ergodic relaxor ceramics (x = 0.03, 0.04, 0.05, 0.06) under strong poling fields do 

not remain after the poling field is removed. As a consequence, close to zero values of d33 are 

recorded. In contrast, the aligned domain polarizations in the ferroelectric base composition (x = 

0.00) and the induced ferroelectrics phase in non-ergodic relaxor compositions (x = 0.01, 0.02, 

0.025) are largely preserved after the poling field is removed, and high d33 values are measured. 

La addition enhances the small signal d33 coefficient (119 pC/N for x = 0.00 while 151 pC/N for 

x = 0.02), and the enhancement is likely due to the formation of nanometer-sized domains and 

the reduced Td. However, it should be pointed out that the measured d33 values are still far below 

those observed in La-doped PbZr0.65Ti0.35O3 with R3c nanodomains.
3,11

 In addition to the

structural instability manifested by the nanodomains and the close-to-room-temperature Td, the 

chemistry of the ceramic apparently also dictates its piezoelectric properties. 

The dielectric properties displayed in Fig. 4 suggest potential applications of the high La-

content compositions as high-temperature dielectrics. To further verify this, the compositions of 

x = 0.08 and 0.10 are evaluated. As shown in Fig. 10, high and yet remarkably stable dielectric 

constants are seen for both compositions in the temperature range between 100 
o
C and 350 

o
C.

The values of εr are ~1500 (±6%) and 1250 (±4%) for x = 0.08 and x = 0.10, respectively, in this 

temperature window, which are compared favorably to other perovskite compositions reported 

previously.
33,34

 Furthermore, no dielectric dispersion is detected while the loss tangent remains
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below 0.1 %. The extremely low loss tangent allows the application of strong electric fields to 

these ceramics. As shown in Fig. 11, the P vs. E hysteresis loops were recorded at a peak field of 

100 kV/cm at temperatures up to 175 
o
C. Compared to those low La-content compositions, the

hysteresis loops for these two compositions are much slimmer, the composition x = 0.10 almost 

shows a linear dielectric behavior. The maximum polarization decreases slightly as temperature 

increases and no sign of polarization saturation is seen even at 100 kV/cm and 175 
o
C. Therefore,

these high La-content compositions are indeed very promising for the use as high-temperature 

dielectrics. It should be noted that the second phase peaks in the X-ray diffraction patterns 

becomes more evident in compositions x = 0.08 and 0.10. 

4. CONCLUSIONS

The crystal structure, domain morphology, and electrical properties of [(Bi1/2Na1/2)0.95Ba0.05]1-

xLaxTiO3 (x = 0.00 ~ 0.10) ceramics are systematically investigated. La dopant is found to 

transform the base composition, (Bi1/2Na1/2)0.95Ba0.05TiO3, from a normal ferroelectric to a non-

ergodic relaxor (x = 0.01 ~ 0.025) and then to an ergodic relaxor (x = 0.03 ~ 0.06). The non-

ergodic relaxor compositions display an electric field-induced phase transition and after poling, 

high piezoelectric properties (151 pC/N in x = 0.02). The ergodic relaxor compositions with low 

La content (x = 0.03 and 0.04) develop large strains under electric fields (0.35% at 70 kV/cm in x 

= 0.04), promising for linear displacement actuator applications. The compositions with high La 

content (x = 0.06, 0.08 and 0.10) are promising for applications in high temperature capacitors 

due to their remarkably high and yet stable dielectric permittivity and extremely low loss tangent 

in a wide temperature range of 100 – 350 
o
C.
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Fig. 1. SEM micrographs recorded from polished and then chemically etched cross-sections of 

[(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3 ceramics. (a) x = 0.00; (b) x = 0.02; (c) x = 0.03; (d) x = 0.06. 
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Fig. 2. X-ray diffraction analysis of the [(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3 ceramics. (a) The full 

patterns of the unpoled ceramics; and a close look at the {111} peak of the (b) unpoled ceramics 

and (c) poled ceramics. 
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Fig. 3. TEM examination of the domain morphology and crystal structure in as-sintered (unpoled) 

[(Bi1/2Na1/2)0.95Ba0.05]1-xLaxTiO3 ceramics. Bright-field micrographs recorded on grains in the 

base composition (Bi1/2Na1/2)0.95Ba0.05TiO3 along their (a) [001] zone axis, (b) [110] zone axis, 

and (c) [112] zone axis; and (d) in the composition x = 0.02 along the [112] zone axis, (e) in the 

composition x = 0.04 along the [112] zone axis. The representative selected area electron 

diffraction patterns are shown as insets. The diffraction pattern from the complex domain region 

in the grain shown in (c) is displayed in (c1) while that from the circled area in (c) with 

nanodomains included is shown in (c2). The 1/2{ooo} and 1/2{ooe} superlattice diffraction spots 

are indicated by bright circles and bright arrows, respectively. 
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Fig. 4. Dielectric constant εr and loss tangent tanδ vs. temperature curves measured at 1, 10, and 

100 kHz during heating of (a), (c), (e), (g), (i), (j), (k), (l) unpoled ceramics, and (b), (d), (f), (h) 

poled samples. 


