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Closing in on Hill’s conjecture

József Balogh ∗ Bernard Lidický † Gelasio Salazar ‡

November 27, 2017

Abstract

Borrowing László Székely’s lively expression, we show that Hill’s conjecture is
“asymptotically at least 98.5% true”. This long-standing conjecture states that the
crossing number cr(Kn) of the complete graph Kn is H(n) := 1

4b
n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c,

for all n ≥ 3. This has been verified only for n ≤ 12. Using flag algebras, Norin
and Zwols obtained the best known asymptotic lower bound for the crossing number
of complete bipartite graphs, from which it follows that for every sufficiently large n,
cr(Kn) > 0.905H(n). Also using flag algebras, we prove that asymptotically cr(Kn) is
at least 0.985H(n). We also show that the spherical geodesic crossing number of Kn

is asymptotically at least 0.996H(n).

1 Introduction

A long standing open problem in topological graph theory is to determine the crossing
number of the complete graph Kn. We recall that the crossing number cr(G) of a graph G
is the minimum number of pairwise crossings of edges in a drawing of G in the plane.

1.1 Our main results

As narrated in the illustrative survey by Beineke and Wilson [14], the problem of estimating
the crossing number of complete graphs seems to have been explored by the British artist
Anthony Hill in the late 1950s. Hill found a construction that yields a drawing of Kn with
exactly 1

4
bn
2
cbn−1

2
cbn−2

2
cbn−3

2
c crossings, for every integer n ≥ 3 [24]. In that paper, the

following conjecture was put forward:
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Conjecture. (Hill’s conjecture)

cr(Kn) = H(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊n− 2

2

⌋⌊n− 3

2

⌋
.

As we recall below in our discussion of previous work, Hill’s conjecture has been only veri-
fied for n ≤ 12, and it follows from work by Norin and Zwols [34] that limn→∞ cr(Kn)/H(n) >
0.905. Our main result in this paper is the following.

Theorem 1.

lim
n→∞

cr(Kn)

H(n)
> 0.98559895.

We also investigate spherical drawings of Kn. We recall that in a spherical geodesic
drawing of a graph, the host surface is the sphere, and each edge is a minimum distance
geodesic arc joining its endpoints. The spherical geodesic crossing number crS2(G) of a graph
G is the minimum number of crossings in a spherical geodesic drawing of G. This crossing
number variant is of interest not only naturally in its own, but also by its connection, unveiled
by Wagner [44], to the Spherical Generalized Upper Bound Conjecture.

We note that Hill’s conjecture also applies to spherical geodesic drawings, since Hill’s
construction can be realized as a spherical geodesic drawing. Using analogous techniques as
in the proof of Theorem 1, we show the following.

Theorem 2.

lim
n→∞

crS2(Kn)

H(n)
> 0.99635588.

Actually we prove this last bound not only for spherical geodesic drawings, but for the
more general class of convex drawings [7, 8]. A drawing D of Kn in the sphere is convex
if, for every 3-cycle C, there is a closed disc ∆ bounded by C with the following property:
for any two vertices u, v contained in ∆, the edge uv is contained in ∆. We prove that the
bound in Theorem 2 holds for convex drawings. Thus in particular it holds for spherical
geodesic drawings, as it is easy to see that these drawings are convex.

1.2 Previous work on Hill’s conjecture

We are aware of three distinct constructions that yield drawings of Kn with exactly H(n)
crossings. Hill’s construction [24] produces cylindrical drawings, which are drawings in which
the vertices are drawn on two concentric circles, and no edge intersects any of these circles,
except at its endpoints. Blažek and Koman’s construction [15] yields 2-page drawings of Kn,
that is, drawings in which every vertex lies on the x-axis, and each edge lies (except for its
endpoints) either in the upper or in the lower halfplane. Very recently, Ábrego, Aichholzer,
Fernández-Merchant, Ramos, and Vogtenhuber [6] described a variant of Hill’s construction
that yields drawings of Kn with H(n) crossings, for every odd n ≥ 11.
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Hill’s conjecture has been verified both for 2-page [4] and for cylindrical [5] drawings. It is
also known that the conjecture holds for monotone drawings, that is, drawings in which each
edge is drawn as an x-monotone curve [3, 11]. The new construction in [6] yields drawings
that are neither 2-page nor cylindrical, but they satisfy a property called bishellability. In
[2], it was proved that Hill’s conjecture holds for bishellable drawings. This last result
implies Hill’s conjecture for 2-page, cylindrical, and monotone drawings, as all these classes
of drawings are bishellable.

A straightforward counting argument shows that if Hill’s conjecture holds for some odd
n, then it also holds for n + 1. In its full generality (that is, not for specific classes of
drawings), the conjecture has only been verified for n ≤ 12. For n ≤ 10 this appears to
have been reported first in [23]; recently, McQuillan and Richter [32] gave a computer-free
verification of Hill’s conjecture for n = 9 (and, by the previous observation, for n = 10). Pan
and Richter [36] gave a computer-assisted proof for n = 11 (and hence for n = 12). Hill’s
conjecture for n ≤ 12 has also been verified in [1]. This last computer-assisted verification
was done under the setting of rotation systems, a framework on which we also heavily rely
in this work.

The conjecture for n = 13 states that cr(K13) = 225. An elementary counting using
cr(K11) = H(11) = 100 shows that cr(K13) ≥ 217. McQuillan, Pan, and Richter [30] have
ruled out the possibility that cr(K13) = 217, and since cr(K13) is an odd number [31], it
follows that cr(K13) ∈ {219, 221, 223, 225}. This was further narrowed in [1], finding that
cr(K13) ∈ {223, 225}.

An elementary counting using that cr(K13) ≥ 223 shows that cr(Kn) ≥ 223
17160

n(n−1)(n−
2)(n− 3) > (0.8317 + o(1)) H(n). However, the best general lower bounds known for cr(Kn)
are obtained by exploiting the close relationship between the crossing numbers of complete
and complete bipartite graphs.

Recall that Zarankiewicz’s conjecture states that cr(Kp,q) := Z(p, q) :=
⌊
p
2

⌋⌊
p−1
2

⌋⌊
q
2

⌋⌊
q−1
2

⌋
,

for all positive integers p, q [14, 22, 43]. It follows from a result in [41] that

L1 := lim
n→∞

cr(Kn,n)

Z(n, n)
and L2 := lim

n→∞

cr(Kn)

H(n)
(1)

both exist, and that L2 ≥ L1.
A counting argument using that cr(K5,n) = Z(5, n) [26] implies that L1 ≥ 0.8. De Klerk,

Maharry, Pasechnik, Richter, and Salazar [17] used semidefinite programming (SDP) tech-
niques to give a lower bound on cr(K7,n), from which it follows that L1 > 0.83. De Klerk,
Pasechnik, and Schrijver [18] also used SDP to give a lower bound on cr(K9,n), and from
this bound it follows that L1 > 0.859. We also note that for each fixed integer m ≥ 3, it is a
finite problem to decide whether or not Zarankiewicz’s conjecture holds for Km,n, for every
n ≥ m [16].

Norin and Zwols (unpublished; see [34]) used flag algebras to show that L1 > 0.905. By
(1) this implies that limn→∞ cr(Kn)/H(n) > 0.905. Prior to our work, this was the best
asymptotic lower bound known for cr(Kn).

For a thorough recent survey of Zarankiewicz’s and Hill’s conjectures, we refer the reader
to [42].
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We finish this survey of previous results with a few words on the spherical geodesic
crossing number. This notion was introduced by Moon [33], who proved the intriguing result
that if one takes a random spherical drawing of Kn (n points are placed randomly in the
sphere, and each pair of points is joined by a shortest geodesic arc), then the expected
number of crossings, divided by H(n), is asymptotically 1. As far as we know, the best
lower bound previously known for crS2(Kn) is the same (asymptotically at least 0.905) as
for cr(Kn).

1.3 An overview of our strategy

Our proof makes essential use of flag algebras. This powerful tool, introduced by Razborov [38],
has been the basis of several recent groundbreaking results in a variety of combinatorial and
geometric problems, such as [10, 12, 13, 19, 25, 27, 37, 39], to name just a few.

Although developed in a more general setting, flag algebras in particular provide a for-
malism to tackle combinatorial problems of an extremal nature, in which a result of an
asymptotic nature is seeked. Using flag algebras, one can find asymptotic estimates on the
size of combinatorial objects, given some information on the structure of these objects for
small size instances.

In a nutshell, to prove Theorem 1 we exploit the fact that we have a complete understand-
ing of all the good drawings of K7 [1], and thus of their rotation systems. (In Section 2.1
we review the notions of a good drawing and of a rotation system). With this informa-
tion, using flag algebras we show that out of the

(
n
4

)
drawings of K4 induced from a good

drawing D of Kn (for every n sufficiently large), less than (roughly) 0.6305
(
n
4

)
can have 0

crossings. Therefore D must have more than (1 − 0.6305)
(
n
4

)
= 0.3695

(
n
4

)
crossings, and

thus cr(Kn) > 0.3695
(
n
4

)
. Theorem 1 is just an equivalent way of writing this last inequality,

using a more precise rounding of the actually computed bounds.
For Theorem 2 we proceed in an analogous manner. For this case, we use that we have

the full catalogue of rotation systems that are induced from convex drawings of K8. We
obtain that out of the

(
n
4

)
drawings of K4 induced from a convex drawing of Kn, less than

(roughly) 0.6272
(
n
4

)
can have 0 crossings.

A more detailed outline of our arguments is given in Section 2, where besides reviewing
the concepts of good drawings and rotation systems, we introduce the notion of density,
which plays a fundamental role in the theory of flag algebras. In Section 3 we state Theo-
rems 3 and 4, two results in the language of flag algebras, and show that Theorems 1 and 2,
respectively, follow as easy consequences. The rest of the paper is then devoted to the proof
of Theorems 3 and 4.

2 Densities and rotation systems

In this section we introduce the concepts of rotation systems and densities, which are central
to the proofs of Theorems 1 and 2. We will motivate the introduction of these notions by
explaining their roles in the proof.
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2.1 Densities in drawings of Kn

We start by recalling that a drawing of a graph is good if (i) no two adjacent edges intersect,
other at their common endvertex; (ii) no two edges intersect each other more than once; and
(iii) every intersection of two nonadjacent edges is a crossing, rather than tangential.

It is easy to show that every crossing-minimal drawing of a graph is necessarily good.
Since we will only deal with crossing-minimal drawings (and with their induced subdrawings),
we will assume throughout this work that all drawings under consideration are good.

In our context, we aim to find an asymptotic lower bound for cr(Kn). It is easy to
show that if D is a good drawing of Kn, then each of the

(
n
4

)
drawings of K4 induced by

D has exactly 0 or 1 crossings. Each crossing appears in exactly one such K4, so our aim
can be stated equivalently as follows: find an asymptotic upper bound for the proportion of
non-crossing K4s in a drawing of Kn.

Formally, for a drawing D of Kn let d( ;D) denote the probability that if we choose
4 vertices at random from D, the corresponding drawing of K4 induced from D by these
4 vertices has 0 crossings. Letting cr(D) denote the number of crossings in D, the above
definition then implies that cr(D) =

(
1− d( ;D)

)(
n
4

)
. The notation hints to the unique

(up to isomorphism) drawing of K4 with 0 crossings (see left hand side of Figure 1).
Thus 0 ≤ d( ;D) ≤ 1 for any drawing D of Kn with n ≥ 4. Since K5 cannot be drawn

without crossings, it follows that d( ;D) < 1 if D is a drawing of Kn with n = 5 (and,
actually, for any integer n ≥ 5).

An asymptotic reading of Hill’s conjecture is that cr(Kn) = (3/8)
(
n
4

)
+ O(n3), and so

this conjecture predicts that d( ;D) is asymptotically at most (1 − 3/8) = 0.625. What
we establish in this paper is that d( ;D) is asymptotically less than (roughly) 0.6305.
Consequently, cr(Kn)/

(
n
4

)
is asymptotically greater than 1−0.6305 = 0.3695. An equivalent

way to say this, as stated in Theorem 1, is that cr(Kn)/H(n) is greater than 0.3695/0.375 >
0.985.

Our approach consists of estimating d( ;D), where D is a crossing-minimal drawing of
Kn for some large integer n, by exploiting our complete knowledge of all good drawings of
Kn for small values of n, and in particular for n = 7 and n = 8.

With Theorem 1 in mind, suppose for a moment that we limit ourselves to using the
information that cr(K7) = 9. From this we obtain that for every drawing D7 of K7 we
have d( ;D7) ≤ α := (1 − 9/

(
7
4

)
) ≈ 0.742. This readily implies that d( ;D) ≤ α for

every drawing D of Kn with n ≥ 7. If there existed arbitrarily large such drawings D with
d( ;D) = α, this would mean that each induced subdrawing of K7 is crossing-minimal.

This is already impossible for n = 8: there are no drawings of K8 in which each induced
subdrawing of K7 has exactly 9 crossings. Loosely speaking, it is not possible to “pack” 8
crossing-minimal drawings of K7 into a drawing of K8. Our approach to get the much better
estimate d( ;D) < 0.6305 (for large n) is to take the full catalogue of all the good drawings
of K7, and use flag algebras to investigate how these can be packed into a good drawing of
Kn, for large n.
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2.2 Rotation systems

To achieve this last goal, we start by turning the topological problem at hand into a com-
binatorial one. Instead of considering directly drawings of complete graphs, we work with
rotation systems. A rotation system combinatorially encodes valuable information of a draw-
ing, by recording, for each vertex v, the cyclic order in which the edges incident with v leave
v (see Figure 1). Thus the rotation system of a drawing of Kn is a collection of n cyclic
permutations. In general, an abstract rotation system [28] on a set S of n elements is a collec-
tion of n cyclic permutations, where each element s ∈ S has an assigned cyclic permutation
of the other n − 1 elements, the rotation at s. We often use s:s1s2 . . . sn−1 to denote that
the cyclic permutation assigned to s is s1s2 . . . sn−1. We say that S is the ground set of the
abstract rotation system.

Throughout this work, for brevity, we shall refer to an abstract rotation system simply
as a rotation system.

1

2

3

4

1 2

3
3

4
4

52

1

Figure 1: The left hand side drawing of K4 induces the rotation system N4 :=
{1:234, 2:134, 3:124, 4:132}. The drawing of K4 in the center induces the rotation system
{1:243, 2:143, 3:124, 4:123}. The drawing D3 of K5 on the right hand side induces the ro-
tation system {1:2543, 2:1435, 3:1542, 4:1532, 5:1243}. We remark that since the rotation at
each vertex is a cyclic permutation of the other vertices, we may alternatively write this last
rotation system, for instance, as {1:3254, 2:3514, 3:1542, 4:2153, 5:3124}.

Two rotation systems are isomorphic if each of them can be obtained from the other
simply by a relabelling of its elements. An abstract rotation system is realizable (respec-
tively, convex) if it is isomorphic to the rotation system induced by a good drawing of Kn

(respectively, by a convex drawing of Kn). Every convex rotation system is realizable, as the
set of convex drawings is a (proper) subset of the collection of good drawings.

Given a rotation system R on a set S of n elements, and a subset S ′ of S, R natu-
rally induces a rotation system (a rotation subsystem) on S ′, simply by removing from R
all the appearences of the elements in S \ S ′. For instance, if R is the rotation system
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{1:234, 2:143, 3:142, 4:123} on S = {1, 2, 3, 4}, and we let S ′ = {1, 2, 4}, then the rotation
system on S ′ induced by R is R′ = {1:24, 2:14, 4:12}.

2.3 Densities in rotation systems

The notion of density of in a drawing of Kn gets naturally extended to rotations. In
general, if R,R′ are rotation systems, then we let d(R′;R) denote the probability that a
randomly chosen rotation system of R with |R′| elements is isomorphic to R′. Note that if
|R′| > |R|, then d(R′;R) = 0.

There is (up to isomorphism) a unique rotation system N4 on 4 elements induced by a
drawing of K4 with no crossings; again we refer the reader to Figure 1, in whose caption N4

is presented.
For a (realizable or not) rotation system R on n ≥ 4 elements, let d(N4;R) denote the

probability that a randomly chosen rotation subsystem of R with 4 elements is isomorphic to
N4. Clearly, if R is realized by a drawing D of Kn, then d( ;D) = d(N4;R). Thus, in order
to prove Theorem 1, it suffices to show that d(N4;R) < 0.6305 for every sufficiently large
realizable rotation system R. For Theorem 2, we show that the bound d(N4;R) < 0.6272
holds if R is convex.

We know the family E7 of 22,730 non-isomorphic realizable rotation systems on 7 elements
(this is discussed in Section 4). A trivial, but key observation, is that if R is a realizable
rotation system on n ≥ 7 elements, then each of the rotation subsystems of R on 7 elements
is (isomorphic to a rotation) in E7.

What we show is that if R is a realizable rotation system on n elements such that each
of its rotation subsystems on 7 elements is in E7, then d(N4;R) < 0.6305 (as long as R is
sufficiently large). We show this by using tools from flag algebras. The size 22,730 turns out
to be small enough to be handled with these techniques.

For Theorem 2 we proceed in a similar way. The improvement over the general bound
in Theorem 1 is obtained using the set C8 of convex realizable systems, which is also small
enough (7,360 rotations) to use the flag algebras approach.

3 Convergent subsequences of rotation systems:

proof of Theorems 1 and 2

In this section we show that Theorems 1 and 2 follow from two results on sequences of
rotation systems. These statements involve the notion of convergence, from the flag algebras
framework.

Let R1, R2, . . . , be an infinite sequence of rotation systems, where |Ri| < |Ri+1| for
i = 1, 2, . . .. The sequence R1, R2, . . . is convergent if, for each fixed rotation system R′, the
sequence {d(R′;Ri)}∞i=1 converges.

A standard compactness argument, using Tychonoff’s theorem, shows that every infinite
sequence of rotation systems has a convergent subsequence. In particular, there exist con-
vergent sequences of realizable, and of convex, rotation systems. Such convergent sequences

7



are the central objects in the next statements which, as we shall see shortly, easily imply
Theorems 1 and 2, respectively.

Theorem 3. Let R1, R2, . . . be a convergent sequence of realizable rotation systems. Then

lim
i→∞

d(N4;Ri) < A :=
22064013752809590266065131421016

35000000000000000000000000000000
< 0.630400393.

Theorem 4. Let R1, R2, . . . be a convergent sequence of convex rotation systems. Then

lim
i→∞

d(N4;Ri) < B :=
43909978466574504806937629255000

70000000000000000000000000000000
< 0.627285407.

The rest of this paper will be devoted to the proofs of these statements. We close this
section by showing how Theorem 1 follows from Theorem 3. The proof that Theorem 2
follows from Theorem 4 is totally analogous.

Proof of Theorem 1, assuming Theorem 3. Let D1, D2, . . . be an infinite sequence of draw-
ings such that, for i ∈ N, Di is a crossing-minimal drawing of Ki. For i ∈ N, let Ri be the
rotation system induced by Di.

A well-known argument using Tychonoff’s theorem shows that R1, R2, . . . has a con-
vergent subsequence Rn(1), Rn(2), . . .. Since (as observed in Section 2.3) d(N4;Rn(i)) =
d( ;Dn(i)) for i = 1, 2, . . ., from Theorem 3 we have limi→∞ d( ;Dn(i)) < A.

The crossing-minimality of each Dn(i) means that cr(Kn(i)) = cr(Dn(i)) for i ∈ N. Now
since cr(Dn(i)) =

(
1 − d( ;Dn(i))

)(
n
4

)
for each i ∈ N, the convergence of d( ;Dn(1)),

d( ;Dn(2)), . . . to a number smaller than A implies that

cr(Kn(1))(
n(1)
4

) ,
cr(Kn(2))(

n(2)
4

) , . . . (2)

is a convergent sequence, whose limit is greater than 1− A.
Since the sequence in (2) is a subsequence of the sequence {cr(Kn)/

(
n
4

)
}∞n=1, and this

sequence is also convergent [41], then limn→∞ cr(Kn)/
(
n
4

)
> 1−A. Since limn→∞H(n)/

(
n
4

)
=

3/8 = 0.375, then limn→∞ cr(Kn)/H(n) > (1− A)/0.375 > 0.98559895.

4 Small rotation systems

As described in Section 2, an essential ingredient in the proof of Theorem 3 is that we
know the full collection of all non-isomorphic realizable rotation systems on 7 elements.
Analogously, to prove Theorem 4 we use the collection of all non-isomorphic convex rotation
systems on 8 elements.

In this section we describe how these families are obtained.

8



4.1 Realizable rotation systems on 7 elements

For each integer n ≥ 3, we use En to denote the set of all non-isomorphic realizable rotation
systems on n elements.

Aichholzer and Pammer wrote code to obtain all non-isomorphic realizable rotation sys-
tems on n elements for n ≤ 9, with the results reported in [1, Table 1] (see also [35]). We
note that in [1] a distinct notion of isomorphism (to the one used in this paper) is used.
Let us say that two rotation systems R,R′ are equivalent if either R is isomorphic to R′, or
if R′ is isomorphic to the system obtained by taking the inverse of each of the rotations in
R (that is, if R′ is the inverse R−1 of R). Under this terminology, in [1] the collections of
non-equivalent realizable rotation systems on n elements were reported, for all n ≤ 9.

Thus the set Mn of non-equivalent realizable rotation systems on n elements can be
obtained from En: if for some rotation R, both R and R−1 are in En, we remove one of them.
Similarly, En can be easily obtained fromMn. First growMn by adding the inverse of each
of its elements, and then run an isomorphism check to get rid of duplicates.

D2 D3 D4D1 D5 D6

Figure 2: The six non-isomorphic drawings of K5. Here we adopt the point of view that
two drawings are isomorphic if there is an orientation-preserving self-homeomorphism of the
sphere that takes one into the other. If we dropped the orientation-preserving condition,
then D5 and D6 would be isomorphic.

We wrote code to obtain E7, proceeding as follows. First we obtain E5. To achieve this,
it suffices to take the collection of non-isomorphic drawings of K5. Here we use the notion
that two drawings are isomorphic if there is an orientation-preserving self-homeomorphism
of the plane that takes one into the other. An easy exercise shows that there are exactly six
non-isomorphic drawings of K5, namely the ones depicted in Figure 2. The class E5 consists
of the rotation systems that correspond to these drawings.

Aichholzer (private communication) noted, based on his results, that a rotation system
on 6 elements is realizable if and only if each of its rotation subsystems on 5 elements is
realizable. As Kynčl observed in [29, Sect. 1], it follows from this observation and [29,
Theorem 1] that a rotation system on n ≥ 5 elements is realizable if and only if each of its
rotation subsystems on 5 elements is realizable.

From this last important observation it follows that the task of finding E6 is straightfor-
ward. For each rotation in E5, we try all possible ways to extend it to a rotation system
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on 6 elements, and for each of these possible ways, we test whether or not each of its rota-
tion subsystems on 5 elements is in E5. Finally, we do an isomorphism check to get rid of
duplicates, and finally obtain E6. To obtain E7 from E6 we follow an analogous procedure.

The family E6 has 165 elements, and E7 has 22,730 elements. From these lists we gener-
ated M6 and M7, which have 102 and 11,556 elements, respectively. These coincide with
the collections reported in [1, Table 1], as kindly verified by Aichholzer (private communi-
cation). The sets E6 and E7 are available at https://orion.math.iastate.edu/lidicky/

pub/hill/.

4.2 Convex rotation systems on 8 elements

Arroyo, McQuillan, Richter, and Salazar [7] have characterized convex drawings of Kn as
follows. A good drawing D of Kn, with n ≥ 5, is convex if and only if all its induced drawings
of K5 are isomorphic to rectilinear drawings. It is well-known that up to isomorphism there
are three such drawings of K5, namely D1, D2, and D3 in Figure 2.

Thus in order to generate the collection Cn of convex rotation systems, for n ≥ 5, it
suffices to follow the procedure described above to obtain En, but in this case the foundation
C5 consists of the rotation systems that correspond to D1, D2, and D3. In this way we
constructed C6, C7, and C8. This last collection consists of 7,360 rotation systems, thus being
even more manageable, for a flag algebras treatment, than E7.

We note that we do not really need the full characterization from [7]. We only need
the easy “only if” part, which is readily verified by checking that D4, D5, and D6 are not
convex. If we did not have the “if” part, we would still know that the class C8 we constructed
contains the class of convex drawings. Thus our results, in particular Theorem 2, would still
hold without this non-trivial direction of the characterization from [7].

5 Flag algebras

This section contains a brief introduction to the flag algebras framework, in the setting
of rotation systems. For a more detailed and general exposition, see the original paper of
Razborov [38]. For more accessible introductions to flag algebras, see for instance [10, 40].

Throughout this discussion R is an infinite set of rotation systems, and for each ` ∈ N,
R` is the set of all rotations in R with ` elements. For our cases of interest, in the next
section we will take R to be the collection E of all realizable rotation systems (to prove
Theorem 1), or the collection C of all convex rotation systems (to prove Theorem 2).

For R ∈ R` and R′ ∈ R`′ , define p(R,R′) to be the probability that choosing ` vertices
uniformly at random from R′ induces a rotation isomorphic to R. Note that p(R,R′) = 0 if
` > `′.

For R ∈ R, we denote by V (R) the ground set of R. We use V (R) to hint that we
think of the ground elements of R as, and call them, vertices (after all, we are interested
in rotation systems that are induced by drawings of Kn). Although evidently R is not a
graph, the rotation systems that we will investigate come from drawings of Kn, and as such,

10

https://orion.math.iastate.edu/lidicky/pub/hill/
https://orion.math.iastate.edu/lidicky/pub/hill/


have an identity as vertices. We let v(R) := |V (R)|. Note that v(R) is also the number of
elements (cyclic permutations) of R.

We start by defining algebras A and Aσ, where σ is any rotation system in R. These
algebras will be called flag algebras. Let RR be the set of all formal linear combinations of
elements in R with real coefficients. Furthermore, let K be the linear subspace generated by
all linear combinations of the form

R−
∑

R′∈Rv(R)+1

p(R,R′) ·R′. (3)

We define A as the space RR factorized by K. The space A comes with naturally defined op-
erations of addition, and multiplication by a real number. To introduce the multiplication in
A, we first define multiplication of two elements in R. For R1, R2 ∈ R, and R ∈ Rv(R1)+v(R2),
we define p(R1, R2;R) to be the probability that for a randomly chosen subset I1 of V (R) of
size v(R1), the rotation subsystems of R induced by I1 and I2 := V (R) \ I1 are isomorphic
to R1 and R2, respectively. We set

R1 ×R2 =
∑

R∈Rv(R1)+v(R2)

p(R1, R2;R) ·R.

The multiplication in R has a unique linear extension to RR, which yields a well-defined
multiplication also in A. A formal proof of this can be found in [38, Lemma 2.4].

Now we introduce an algebra Aσ for each σ ∈ R. The element σ is usually called a
type within the flag algebras framework. Without loss of generality, assume that the vertices
of σ are labelled 1, 2, . . . , v(σ). Define Rσ to be the set of all elements in R with a fixed
embedding of σ, i.e., an injective mapping θ from V (σ) to V (R) such that the image of θ,
denoted by θ(V (σ)), induces in R a rotation isomorphic to σ. Following the customary flag
algebras terminology, the elements of Rσ are σ-flags, and the rotation induced by θ(V (σ))
is the root of a σ-flag.

For every ` ∈ N, we define Rσ
` ⊂ Rσ to be the set of the σ-flags from Rσ that have size

`. Analogously to the case for A, for two σ-flags R,R′ ∈ Rσ with embeddings of σ given
by θ, θ′, we set p(R,R′) to be the probability that a randomly chosen subset of v(R)− v(σ)
ground elements in V (R′) \ θ′(V (σ)) together with θ′(V (σ)) induces a substructure that is
isomorphic to R through an isomorphism f that preserves the embedding of σ. In other
words, the isomorphism f has to satisfy f(θ′) = θ. Let RRσ be the set of all formal linear
combinations of elements of Rσ with real coefficients, and let Kσ be the linear subspace of
RRσ generated by all the linear combinations of the form

R−
∑

R′∈Rσ
v(R)+1

p(R,R′) ·R′.

We define Aσ to be RRσ factorized by Kσ.
We now proceed to define the multiplication of two elements from Rσ. Let R1, R2 ∈ Rσ,

R ∈ Rσ
v(R1)+v(R2)−v(σ), and let θ be the fixed embedding of σ in R. Choose uniformly at
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random a subset of X in V (R)\θ(V (σ)) of size v(R1)−v(σ). Let Y = V (R)\{θ(V (σ))∪Y }
of size v(R2) − v(σ). We define p(R1, R2;R) to be the probability that X ∪ θ(V (σ)) and
Y ∪θ(V (σ)) induce rotations isomorphic to R1 and R2, respectively. This definition naturally
extends to Aσ.

Consider an infinite sequence (Rn)n∈N, whereRn ∈ Rn. We note that the density d(R;Rn)
used in Section 3 is simply p(R,Rn) in the current setting. We use p(R,Rn) in this section
as this is the custom notation in flag algebras discussions. We recall from Section 3 that
(Rn)n∈N is convergent if the sequence

(
p(R,Rn)

)
n∈N converges for every R ∈ R. A standard

compactness argument using Tychonoff’s theorem yields that every infinite sequence has
a convergent subsequence. Fix a convergent sequence (Rn)n∈N. For every R ∈ R, we set
φ(R) = limn→∞ p(R,Rn) and linearly extend φ to A. We usually refer to the mapping φ
as the limit of the sequence. The obtained mapping φ is a homomorphism from A to R.
Note that for every R ∈ R we have φ(R) ≥ 0. Let Hom+(A,R) be the set of all such
homomorphisms, i.e., the set of all homomorphisms ψ from the algebra A to R such that
ψ(R) ≥ 0 for every R ∈ R. An interesting, crucial fact in the theory of flag algebras, is that
this set is exactly the set of all limits of convergent sequences in R [38, Theorem 3.3].

It is possible to define a homomorphism φσ from Aσ to R and an unlabelling operator
J·Kσ : Aσ → A such that if φσ(Aσ) ≥ 0 for some Aσ ∈ Aσ, then φ(JAσKσ) ≥ 0. For details,
see [38]. The unlabelling operator is very useful for generating non-obvious valid inequalities
of the form φ(A) ≥ 0 for some A ∈ A. In particular, φ(J(Aσ)2Kσ) ≥ 0 is always a valid
inequality, and the generation of these inequalities can be somewhat automated.

6 Proof of Theorem 3

Proof of Theorem 3. We use the flag algebras framework developed in the previous section,
performing the calculations on E7. As we observed in Section 4, this set has cardinality
22,730. We follow the convention from the previous section to think of the elements in the
ground set of a rotation as vertices.

We used 1803 labeled flags of 8 types σ1, . . . , σ8. Type σ1 is one labeled vertex and let
F1 be Eσ14 . Type σ2 are three labeled vertices and let F2 be Eσ25 . Types σi for 3 ≤ i ≤ 8 are
all labeled rotations on 5 vertices, namely the ones associated to the drawings in Figure 2.
For 3 ≤ i ≤ 8, let Fi = Eσi6 . Notice that for all i we picked the sizes of flags in Fi such that
the product of any two flags from Fi can be expressed in Eσi7 , and hence subsequently gives
an equation in E7.

The following holds for any φ ∈ Hom+(A,R). Let M1, . . . ,M8 be positive semidefinite
matrices, where Mi has the same dimension as Fi for all i. Then

0 ≤ φ

(∑
1≤i≤8

JF T
i MiFiKσi

)
= φ

(∑
R∈E7

cR ·R

)
, (4)

where cR is a real number depending on M1, . . . ,M8 for each R. The expression (3) implies
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that

φ (N4) = φ

(∑
R∈E7

p(N4, R) ·R

)
.

By combining this and (4) we obtain the following, where (we recall from Section 2) N4 is
the rotation system that corresponds to :

φ (N4) = φ

(∑
R∈E7

p(N4, R) ·R

)
≤ φ

(∑
R∈E7

(p(N4, R) + cR) ·R

)
.

Let A be as in the statement of Theorem 3. By solving an instance of a semidefinite program,
we found M1, . . . ,M8 such that

p(N4, R) + cR ≤ A

for all R ∈ E7. Noting that φ
(∑

R∈E7 R
)

= 1, we obtain

φ (N4) ≤ φ

(∑
R∈E7

(p(N4, R) + cR) ·R

)
≤ A · φ

(∑
R∈E7

R

)
= A.

Let R1, R2, . . . be a convergent sequence of realizable rotation systems. Since φ(N4) =
limi→∞ p(N4, Ri) = limi→∞ d(N4;Ri), this last equation implies that limi→∞ d(N4;Ri) ≤ A <
0.630400393, as claimed in Theorem 3.

Due to space limitations, we provide E7, Fi and Mi for all i, as well as programs that
perform the calculations, in electronic files at https://orion.math.iastate.edu/lidicky/
pub/hill/.

Proof of Theorem 2. In this case we performed the calculations on C8. We used 3664 labeled
flags of 5 types σ1, . . . , σ5. Type σ1 is one labeled vertex and let F1 be Cσ14 , i.e., all realizable
convex rotation systems on 4 vertices, where one vertex is labeled. Type σ2 are three labeled
vertices and let F2 be Cσ25 . Types σi for 3 ≤ i ≤ 5 are all labeled rotations on 5 vertices,
namely the ones associated to the drawings D1, D2, and D3 in Figure 2. For 3 ≤ i ≤ 5, let
Fi = Cσi6 . Notice that for all i we picked the sizes of flags in Fi such that the product of any
two flags from Fi can be expressed in Cσi8 , and hence subsequently gives an equation in C8.

We can now pick up the proof of Theorem 1 at the paragraph that starts “The follow-
ing holds. . . ”, with the following changes. Instead of having positive semidefinite matrices
M1, . . . ,M8, we have only five positive semidefinite matrices M1, . . . ,M5 (here again each
Mi has the same dimension as Fi). The first summation in (4) is now on 1 ≤ i ≤ 5, and
every summation on R ∈ E7 gets replaced by a summation on R ∈ C8. Finally, instead of
the constant A in Theorem 1, we have the constant B in Theorem 2.

With these changes the proof carries over exactly as in the previous proof, finally obtain-
ing that limi→∞ d(N4;Ri) ≤ B < 0.627285406.

Due to space limitations, we provide C8, Fi and Mi for all i, as well as programs that
perform the calculations, in electronic files at https://orion.math.iastate.edu/lidicky/
pub/hill/.
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7 Concluding remarks

As we mentioned in Section 1, the flag algebras framework was used by Norin and Zwols [34]
to attack another crossing number problem, namely Zarankiewicz’s conjecture. Recently,
Goaoc, Hubard, De Joannis De Verclos, Sereni, and Volec [21] also used flag algebras to
approach a related problem in discrete geometry, namely the density of k-tuples in convex
position in point sets in the plane.

Norin and Zwols computed all the good drawings of K3,4, and for each such drawing they
recorded which pairs of edges cross each other. With this information, they used flag algebras
to obtain the lower bound limn→∞ cr(Kn,n)/Z(n, n) > 0.905. In this paper we worked with
rotation systems, but we note that this approach is equivalent to the alternative (à la Norin-
Zwols) of computing all good drawings of K7 and recording, for each such drawing, which
pairs of edges cross each other. This follows since from the rotation system of a drawing one
can tell which pairs of edges cross each other in the drawing [9, 20].

An earlier approach we tried involved associating to a good drawing D of Km the 4-
uniform hypergraph HD whose vertices are the vertices of the drawing, and where four
vertices form an edge if and only if the drawing of K4 induced from D on these four vertices
has a crossing. We refer the reader to [42, Section 13.4] for a discussion on the connection
between crossing number problems and Turán-type hypergraph problems. This approach,
also using flag algebras, yielded a considerably weaker lower bound than the one in Theo-
rem 1. Obtaining poorer bounds in this setting is quite natural since, as we recalled above,
with the rotation system of a drawing one can tell not only which K4s have a crossing, but
exactly which edges cross each other in a given K4.

We are currently working on two separate approaches to apply flag algebras to obtain
improved lower bounds on the rectilinear crossing number cr(Kn,n). We can currently show
that limn→∞ cr(Kn,n)/Z(n, n) > 0.973, and we hope to get an even better lower bound
when a set of ongoing calculations is completed. Together with Pfender and Norin, we had
previously considered the special version of rectilinear drawings in which the partite classes
are separated by a line. In this case, we got a lower bound of 0.99.

Let us mention that it might be possible to improve the constants A and B in Theorems 3
and 4 by a tiny amount. The matrices Mi in the proofs of these theorems were first obtained
by a semidefinite programming solver. These matrices do not contain exact entries, and
some small rounding was necessary to ensure that the Mis are indeed positive semidefinite
and the evaluation of p(N4, R) + cR does not have any numerical errors. We have not tried
to optimize the rounding process as we think the possible improvement is negligible.

For Theorem 3, performing the calculations on E8 would likely provide a remarkable
improvement. Unfortunately, the size of this set makes it out of reach for current computers.
Similarly, for Theorem 4, performing the calculations on C9 would very likely result in a
considerable improvement, but this set is also too big to be handled with computer power
available at this time.

Aichholzer (private communication) has verified that all crossing-minimal drawings of
Kn, for n ≤ 12, are convex. Thus it seems reasonable to conjecture that all crossing-minimal
drawings of Kn, for every integer n, are convex. If this were proved, the bound in Theorem 2
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would apply for the crossing number of Kn.
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