Transformation toughening in an antiferroelectric ceramic

Thumbnail Image
Date
2014-01-01
Authors
Tan, Xiaoli
Young, S.
Seo, Y.H.
Zhang, J.Y.
Hong, W.
Webber, K.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tan, Xiaoli
Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract

Due to a larger specific volume of the ferroelectric phase, the antiferroelectric-ferroelectric transition is believed to have an enhanced toughening effect against fracture. The toughening requires a non-recoverable transformation in the crack process zone. Complementary measurement of the crystal symmetry, dielectric constant, field-induced polarization, and Raman spectrum on ceramic Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3 indicates that the antiferroelectric and the ferroelectric states are equally stable at room temperature. Raman mapping further reveals the presence of the ferroelectric phase in a localized zone at the crack tip after unloading. A significant phase-transition-toughening effect is demonstrated in the antiferroelectric ceramic with both indentation fracture and R-curve experiments. The effect in this model composition leads to toughness values ~50% larger than other antiferroelectric ceramics with similar compositions and 60 ~ 130% higher than ferroelectric Pb(Zr,Ti)O3 ceramics. A simple analysis confirms the toughening effect from both volumetric phase transition and deviatoric domain switching during the transformation. The results suggest that other materials near phase boundaries may have similar high fracture resistance.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Acta Materialia . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Materialia , [62, 114, (2014)] DOI:10.1016/j.actamat.2013.09.038.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections