












Obviously the two vectors in the pattern (e1, e8) are less densely distributed than the vectors
in patterns (e1, e2) and (e1, e3). We use the following equation to compute the density of
different patterns, denoted as Dpatterm: For m vectors, we will totally have

 pairs. And we compute the summation of the differences of all these
m(m-1)/2 pairs and the summation is then scaled by dividing the number of pairs, that is
m(m-1)/2)

(5)

where m is the number of vectors in each irreducible combination.

QTRFIT algorithm for superimposing two clusters of unit vectors
The QTRFIT algorithm was developed in 1990 by David J. Heisterberg31 to superimpose
atoms of two molecules by quaternion-based approach. In this algorithm, two matrices A =
[aij] and B = [bij] of size n×n built from vectors ai and bi ; (1≤i≤n ) represent conformations
of each of two molecules, or as in our study, two sets of unit vectors. The goal is to find a
rotation represented by the matrix U which minimizes the error of superimposition defined
as:

(6)

where W is the weight matrix, which in our case is simply the identity matrix I, and Tr
denotes the trace of the matrix. A detailed description of the quaternion representation of
three-dimensional rotations and the QTRFIT algorithm was given in our previous study1. In
Eq. 6, B is the target matrix composed of directional vectors, and the matrix A (also
composed of directional vectors), tries to fit it by optimized rotation. The order of
directional vectors (columns) in matrices A and B is fixed. However this order may not be
optimal to minimize the error E in Eq. 6. To globally minimize this error we should consider
all permutations of directional vectors in matrix A. If A is composed of m non-zero vectors,
we can rearrange them in m! different ways. After superimposing A and all its
rearrangements with B, we can find the order of directional vectors in the matrix A having
the smallest root mean square distance (RMSD)

(7)

upon superimposition between A’ = UA and B.

Evaluation criteria for superimposition
We use the same criterion as in our previous study1 to evaluate the quality of
superimposition between the directional vectors of coordination clusters derived from our
1.5Å522 dataset and the directions of the icosahedron model. The quality of the
superimposition of two sets of vectors is measured by the order parameter (OP), defined as
the average square of the cosine of the angle Δα between two superimposed directional
vectors:
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(8)

where m is the number of superimposed directional vectors.

For two sets of vectors that are perfectly superimposed the order parameter OP = 1. We also
use RMSD defined by Eq. 7 to measure the difference between two superimposed sets of
vectors. If two sets of vectors perfectly overlap then RMSD equals zero. Since all vectors
studied here are unit vectors, RMSD is an alternative measure of the quality of a
superposition to OP.

Linear regression
We use the R programming language to perform linear regression analysis in our studies. R
is a language and environment for statistical computing and graphics freely available as a
part of the GNU Project. R currently developed by the R Development Core Team
(http://www.r-project.org) is similar to the S language and environment developed in the
mid-70s at Bell Laboratories by John Chambers and colleagues. The R function, ‘lm’, is
used to fit linear models. We also use the built-in function step( ) to choose a best formula-
based linear regression model.

RESULTS
Results from protein dataset

The distribution of unit vector clusters from the 1.5Å522 dataset has a nice bell shape with
its peak around 6-7 vectors (Fig. 2). In our dataset, there are few coordination clusters
having more than 12 neighbors (directional vectors). The clusters having 13 and 14
directional vectors account for 0.2% and 0.04% of the total number of clusters, respectively.
Because the icosahedron model has only 12 vertices, we ignore those cases with more than
12 directional vectors.

Results from analyzing the icosahedron model
We choose m (1≤m≤12) vectors from the 12 directional vectors of the icosahedron pointing
from its center to 12 vertices. Table I lists all irreducible combinations of m vectors. The
irreducible m-tuplets of directional vectors greatly reduce the combinatorial size of the
problem. Without this combinatorial reduction in choosing sets of m (1≤m≤12) vectors from
12, we would have 212 - 1 = 4095 of all possible combinations. This can be reduced to 63
irreducible m-tuplets by eliminating sets of vectors related by symmetry of the icosahedron,
using the method described by us earlier. It should be noted that there is a symmetry
between the distribution of the m-tuplets and that of the (12-m)-tuplets of vectors since the
later ones correspond to the removal of m vectors from the single 12-tuplet. Because of this
the maximum number of irreducible m-tuplets (12) is observed for m = 6 (see Table I).

For each irreducible combination of m orientational vectors (m-tuplet), we consider two
properties: pattern density Dpattern defined by Eq. 5 and the probability of such irreducible
m-tuplet. Dpattern is a measure of how directional vectors in a given coordination cluster are
close to each other. The smaller Dpattern value is, the closer are the vectors in this cluster.
For the 1-tuplet Dpattern is zero by definition. It is rather obvious that combinations
containing neighboring vertices of the icosahedron should have low values of Dpattern, while
those including opposite, most distant vertices should have large values of Dpattern. The
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results shown in Table I clearly demonstrate the correctness of this supposition. For all
irreducible m-tuplets shown in Table I the triplet C3_1 that has the lowest Dpattern = 1.051 is
the combination of three vectors: e1, e2, and e6 joining the center of the icosahedron with
three vertices located on the same equilateral triangular face. On the other hand the doublet
C2_3 that has the largest value of Dpattern = 2.000 represents the combination of two
oppositely directed vectors e1 and e8.

Probability of a given irreducible m-tuplet informs us if a particular irreducible combination
is more likely than other m-tuplets. For choosing 1 or 11 vectors from 12, there are 12
different combinations; however all of them are reducible and we have only a single
irreducible combination (packing pattern). For choosing 12 vectors from 12, obviously only
one combination is available. There are several different irreducible combinations (shown in
Table I) when we choose m (2≤m≤10) out of 12 unit vectors of the icosahedron. Each
irreducible combination (packing pattern) represents a certain number of reducible
combinations, which defines the probability of this packing pattern. We separately consider
m-tuplets with a different number m (1≤m≤12) of directional vectors, so the probabilities of
different packing patterns with the same number m of vectors by definition sum to 1. There
are no obvious correlations between the density of a given pattern Dpattern and its
probability.

Results from superimposition of coordination clusters derived from the 1.5Å522 dataset
with directional vectors in icosahedron model

We have used the QTRFIT algorithm to superimpose coordination clusters derived from the
1.5Å522 dataset with directional vectors of the icosahedron model. If a given coordination
cluster contains m (1≤m≤12) vectors, we superimpose it with the irreducible m-tuplets of
directional vectors (packing patterns) having the same number m of vectors. The packing
pattern having the lowest RMSD or the highest OP among all packing patterns with same
number m of vectors is chosen as the best fit of a given coordination cluster. The results of
superimposition are shown in Table II. In Figure 3, we show the distribution of the polar (φ)
and azimuthal (θ) angles of each vector in the coordination clusters after superimposition
with the icosahedron model. These polar and azimuthal angles are unevenly distributed
among 12 peaks corresponding to 12 nodes of the icosahedron model, because we don’t
choose irreducible vectors randomly.

We use two parameters: RMSD and OP, to measure how well coordination clusters derived
from the 1.5Å522 dataset fit the directional vectors of the icosahedron. If two sets of vectors
are completely overlapping, the the RMSD is 0 and the OP is 1. With increasing number m
of vectors, the mean values of RMSD increase and the mean values of OP decrease. The
standard deviations of both RMSD and OP are small and practically don’t depend on m. If
two sets of superimposed clusters are uncorrelated, the OP value is 1/3.1 Our
superimposition results show clearly that the OP values are much better than 1/3 (see Table
II). In our previous study, superimposition of coordination clusters derived from protein
structures with directional vectors of the fcc lattice gave the order parameter value OP =
0.82.1 We have also observed in those studies that the OP values decrease with growing
number m of directional vectors in the cluster.

Here we study a different model, with directional vectors of the icosahedron instead of the
fcc lattice. We use the same QTRFIT algorithm for superimposition of clusters, and we
obtain much better overlap (higher OP values) between directions in coordination clusters
derived from the protein dataset and the model. This shows that the icosahedron is a better
model to represent the residue packing problem than the fcc lattice.

Feng et al. Page 7

Proteins. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We have performed superimposition computations for all 110,255 coordination clusters
derived from the 1.5Å522 dataset. Table II shows the results obtained for best packing
pattern for each coordination cluster averaged over all clusters. We were able also to
compute distributions of coordination clusters among different packing patterns for a given
number m of directional vectors in the cluster. Another interesting problem is what factors
affect these distributions. Figure 4. shows the dependence between frequencies of various
patterns and their densities Dpattern (defined by Eq. 5 and listed for various patterns in Table
I). We observe a general trend that the frequency of a pattern decreases for lower densities
(the increase of Dpattern value), which implies that coordination clusters derived from the
1.5Å522 dataset tend to pack as closely as possible. Since each vector actually represents a
residue, coordination clusters represent not only directions of contacts, but also locations of
neighboring residues. Our observation (Fig. 4) that residues try to pack as closely as possible
is consistent with results of many earlier studies.1,8,10,12 Regardless of whether
coordination clusters include only two vectors (for surface residues) or ten or more vectors
(for buried residues inside protein core), they always tend to be packed as closely as
possible.

Packing patterns (irreducible combinations of directional vectors) have different
probabilities since each irreducible set of vectors represents a different number of reducible
vector combinations. We are interested in knowing whether the varying probabilities of
packing patterns affect the distribution of coordination clusters among different patterns. In
Figure 5, we plot fractions of various patterns vs. their probabilities for vector clusters
containing from 2 to 10 vectors, and cannot find any correlations between them. However, if
we check these vector clusters individually, we find that the pattern fraction is affected by its
probability, although the dependence on pattern density Dpattern is dominant. Figure 6 shows
the relations between pattern fraction and pattern density Dpattern (Fig. 6a) and pattern
probability (Fig. 6b) for vector clusters containing 6 directional vectors. Two points in Figs
6a and 6b pointed out in two circles illustrate how pattern probability influences pattern
fraction. These two points have lower Dpattern (1.305 and 1.350) than others, so their
fractions should be higher. However they obviously do not follow the overall trend, which
may be explained by the low probabilities (0.013 and 0.22) of these patterns.

Multiple regression analysis of packing patterns
In this next section we will apply regression analysis to study the relationships among
pattern density, pattern probability and pattern fraction. There are at least two independent
variables: pattern density (x1) and pattern probability (x2) related to our dependent variable:
pattern fraction (y), and therefore this is a multiple linear regression problem. By checking
the correlation of our independent and dependent variables, we found that there is no simple
linear correlation between them. Because of this we include both x1, x2 and x1

2, x2
2 terms in

the regression analysis. We also included the cross-term x1x2 corresponding to the
interaction between x1 and x2 jointly affecting y.

Before performing a regression, we transformed y to  so that it appears more like a
normal distribution. In order to check the quality of the transformation and to diagnose if the
normality assumption behind the regression model is reasonable for our data fitting problem,
we draw a normal probability plot of the residuals shown in Figure 7. The normal
probability plot shows the actual percentiles of the residuals vs. the theoretical percentiles of
a normal distribution with the same mean and the variance. Ideally, this plot should be a
diagonal straight line. Figure 7 shows only a slight departure from normality in the tail of the
distribution. This small extent of non-normality suggests that it may be appropriate to use a
linear regression model for our data fitting. (http://www.duke.edu/~rnau/regnotes.htm)
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The choice of the best possible model is important for enabling good predictions. First, we
use all independent variables: x1, x2, x1

2, x2
2, and x1x2, for building a full linear regression

analysis model. Since not all independent variables are significant, we use the build-in
function step( ) in R to choose a best reduced model.32,33 The model we finally choose is

. In this model, all three terms with independent variables depend
on x1 (density of pattern Dpattern), but only one cross-term corresponding to the interaction
of x1 and x2 is related to the pattern probability. This implies that Dpattern plays a more
dominant role in determination of the pattern fraction than pattern probability. This result is
consistent with our previous observations reported in Figures 4 and 6.

The coefficients obtained by fitting our data to the model (equation) are 3.10, - 2.86, 0.61,
and 0.51 for a, b1, b2, and b3 respectively (Table III), which explains why y has a positive
correlation with x2, and the interactions of x1 and x2, but a negative correlation with x1.
Figure 8 shows the scatter plot of predicted vs. observed square root fractions. The dotted
lines denote 95% confidence intervals for predicted values computed by using the maximal
standard error of predicted values. Most of predicted  are located in the region of 95%
confidence intervals.

Does the central residue affect protein packing?
We want to know if the central residue type influences the orientational packing of its
neighbors. All 110,255 coordinate clusters from the 1.5Å522 dataset were divided into 20
subsets according to the type of the central residue. For each subset, there is no significant
difference in RMSD and OP values, which implies that the type of central residue is not very
important for the superimposition of coordination clusters with the icosahedron model. In
order to learn about possible central residue-type effect on protein packing pattern, we
compared pairwise all pattern fraction distributions for the 20 different types of central
residues and the overall distribution (ALL) and computed Pearson’s correlation coefficients
among all distributions (Table IV). Most of correlation coefficients are above 0.9 except for
Gly and Cys, which have a clearly different behavior from the other amino acids. Glycine
does not have a side chain and the Cα atom represents the whole residue, and many cysteines
form disulfide bonds, both of which appear to influence the packing patterns of their
neighboring residues.

Although all other central residues have better correlation coefficients than Gly and Cys,
they show different orders of these correlations upon a careful analysis. For example, Trp
has correlations with other residues varying from 0.890 to 0.978 in the following order: Glu
< Lys < Arg < Gln,<Asp < Ala < Thr < Asn < Ser < ALL < His < Pro < Tyr < Met < Val <
Phe < Leu < Ile. This order suggests that Trp has the most similar distribution to the other
hydrophobic residues, such as Ile, Leu, Phe, Val, Met and Tyr, and the least similar
distributions to hydrophilic residues such as Glu, Lys, Arg, Gln and Asp in the center of the
coordination cluster. We check also the clusters with central residue Asp, which shows
almost reverse order of correlations: Phe < Tyr < Trp < Ile < Val < Lys < Leu < Arg,Met,Pro
< His < Thr < Gln < Glu < Ala < Ser < Asn < ALL with correlation coefficients ranging
from 0.919 to 0.991. Basically, ASP has the most similar distribution to other hydrophilic
residues and the least similar distribution to hydrophobic residues in the center of the
coordination cluster. A similar order of correlations can be obtained for all other central
residues except for Gly and Cys. This observation implies that central residues with similar
hydrophobicity should exhibit similar packing behavior.
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DISCUSSION
In the present study, we use a larger and higher quality protein dataset than in our earlier
work to study the residue packing problem. We derived 110,255 coordination clusters from
our new 1.5Å522 dataset that is thus almost 4 times larger than the number of clusters used
previously1.

Protein packing is an important problem in structural biology and relates to protein structure
design and prediction, binding site prediction etc. It is also a difficult and somewhat
controversial problem because of its complexity, existence of conflicting experimental data,
and the absence of deep and rational analysis. A reasonable and simple model is a critical
step in the study of the protein packing problem at the residue level. In previous studies,
lattice models were used to fit coordination clusters derived from protein structure datasets.
In the present study we use the icosahedron as a model of residue packing. The icosahedron
has a higher local packing density than any other lattice model, which may account for the
reason why we obtain better superimpositions of coordination clusters with directional
vectors pointing from the centers of the icosahedra to their 12 vertices (OP = 0.91) than with
the 12 directions of the fcc lattice (OP = 0.82). This is somewhat surprising since all angles
of the icosahedron are identical while the fcc directions have several angles. It is extremely
important to have good superimpositions to simplify the residue packing problem. We can
explain residue packing in proteins using simple theoretical models only if coordination
clusters derived from experimental protein structures match the theoretical model well.
Improvement of the superimposition results using the icosahedron model enables us to
explain the residue packing problem in a simpler and clearer way.

We carefully analyzed properties of different irreducible combinations of unit directional
vectors of the icosahedron (packing patterns) by introducing two novel parameters: pattern
density Dpattern and pattern probability. We found that coordination clusters from the
1.5Å522 dataset fit these packing patterns in a non-random way. The preference is given to
packing patterns having higher pattern density (lower value of Dpattern) and higher pattern
probability. Such packing behavior suggests that protein packing is driven mostly to
maximize the packing density because the preference of low values of pattern density
Dpattern indicates that proteins tend to be packed at higher density. The probability of
packing patterns is a novel concept not previously studied. Although the probability of
packing patterns does not have a dominant effect on the distribution of residue clusters, it
does affect them as seen by the analysis of a specific example (Fig. 6) and by developing a
linear regression model.

The residue clusters with the different central residues (except Gly and Cys) have similar
preferences to packing patterns as seen from examination of pairwise correlation coefficients
between them. This observation is consistent with our previous studies1. Additionally we
have found that correlation coefficients are related to the hydrophobicity of the central
residue in the coordination cluster.

One of the most interesting parts of our study is the prediction of pattern fractions using a
linear regression model. The predicted square roots of fractions obtained from a multiple
linear regression model exhibit a good correlation with the observed ones as seen in Figure
8. The application of this model in the future might significantly aid in predicting protein
structures and in protein design. We hope that it may be possible to convert this model into a
set of effective energy functions. Another interesting question is whether this regression
model is sufficiently robust for selecting among different fitting models.
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Fig. 1. The icosahedron model
The numbers beside nodes are in the same order as the vectors defined in Eq. 1 connecting
the center of the icosahedron (red point) with each of the nodes.
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Fig. 2.
The distribution of clusters of directional vectors derived from the 1.5Å522 dataset.

Feng et al. Page 14

Proteins. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3. The distribution of polar and azimuthal angles of vectors in coordination clusters after
superimposition with the icosahedron model
The 12 peaks correspond to orientations [(φ,θ)]=(63,0), (63,72), (63,144), (63,216),
(63,288), (117,36), (117,108), (117,180), (117,252), (117,324), (0,0), (180,0) in the
icosahedron, and are listed in the same order as the vectors defined in Eq. 1 and shown in
Figure 1.
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Fig. 4. Pattern fraction vs. pattern density Dpattern
Distribution of coordination clusters among different patterns is negatively proportional to
densities of these patterns, indicating that the closely positioned clusters are more frequent.
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Fig. 5. Pattern fraction vs. pattern probability
There is no clear relationship between the two measures.
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Fig. 6. Pattern fraction vs. pattern density Dpattern (a) and pattern fraction vs. pattern
probability (b) for the coordination clusters containing 6 vectors
There is an overall trend for diminishing fractions at lower packing density (higher value of
Dpattern). However, the two circles clearly fall outside the overall trends.
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Fig. 7.
Normal probability plot for the square root of pattern fraction.
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Figure 8. Observed vs. predicted values of 
The dotted lines show the 95% confidence intervals for the predicted values. The black
diagonal line shows the ideal case when observed and predicted values are identical.

Feng et al. Page 20

Proteins. Author manuscript; available in PMC 2011 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng et al. Page 21

Ta
bl

e 
I

D
en

si
tie

s o
f p

at
te

rn
s D

pa
tte

rn
 a

nd
 th

ei
r p

ro
ba

bi
lit

ie
s f

or
 a

ll 
irr

ed
uc

ib
le

 c
om

bi
na

tio
ns

 o
f m

 v
ec

to
rs

 c
ho

se
n 

fr
om

 1
2 

di
re

ct
io

na
l v

ec
to

rs
 o

f t
he

 ic
os

ah
ed

ro
n.

na
m

es
# 

of
ve

ct
or

s
D

pa
tte

rn
Pr

ob
ab

ili
ty

Ir
re

du
ci

bl
e 

ve
ct

or
 c

om
bi

na
tio

n 
(n

um
be

r 
i r

ep
re

se
nt

s v
ec

to
r 

e i
de

fin
ed

 in
 E

q.
 1

 a
nd

 sh
ow

n 
in

 F
ig

ur
e 

1)

C
1

1
0

1.
00

0
1

C
2_

1
2

1.
05

2
0.

45
5

1
2

C
2_

2
2

1.
70

1
0.

45
5

1
3

C
2_

3
2

2.
00

0
0.

09
1

1
8

C
3_

1
3

1.
05

1
0.

09
1

1
2

6

C
3_

2
3

1.
30

5
0.

27
3

1
2

3

C
3_

3
3

1.
51

6
0.

27
3

1
2

4

C
3_

4
3

1.
63

2
0.

27
3

1
2

8

C
3_

5
3

1.
70

1
0.

09
1

1
3

9

C
4_

1
4

1.
18

5
0.

06
1

1
2

3
11

C
4_

2
4

1.
30

5
0.

12
1

1
2

3
6

C
4_

3
4

1.
41

4
0.

12
1

1
2

3
4

C
4_

4
4

1.
47

8
0.

24
2

1
2

3
8

C
4_

5
4

1.
51

6
0.

12
1

1
2

3
12

C
4_

6
4

1.
57

6
0.

24
2

1
2

3
9

C
4_

7
4

1.
61

1
0.

06
1

1
2

4
12

C
4_

8
4

1.
63

3
0.

03
1

2
8

9

C
5_

1
5

1.
28

2
0.

07
6

1
2

3
4

11

C
5_

2
5

1.
39

0.
07

6
1

2
3

6
10

C
5_

3
5

1.
41

4
0.

09
1

1
2

3
4

5

C
5_

4
5

1.
45

3
0.

22
7

1
2

3
4

6

C
5_

5
5

1.
51

3
0.

22
7

1
2

3
4

9

C
5_

6
5

1.
53

6
0.

07
6

1
2

3
4

12

C
5_

7
5

1.
54

9
0.

15
2

1
2

3
8

9

C
5_

8
5

1.
57

1
0.

07
6

1
2

3
9

12

Proteins. Author manuscript; available in PMC 2011 January 11.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng et al. Page 22

na
m

es
# 

of
ve

ct
or

s
D

pa
tte

rn
Pr

ob
ab

ili
ty

Ir
re

du
ci

bl
e 

ve
ct

or
 c

om
bi

na
tio

n 
(n

um
be

r 
i r

ep
re

se
nt

s v
ec

to
r 

e i
de

fin
ed

 in
 E

q.
 1

 a
nd

 sh
ow

n 
in

 F
ig

ur
e 

1)

C
6_

1
6

1.
30

5
0.

01
3

1
2

3
4

5
11

C
6_

2
6

1.
35

0.
02

2
1

2
3

4
7

11

C
6_

3
6

1.
37

7
0.

06
5

1
2

3
4

6
11

C
6_

4
6

1.
41

9
0.

13
1

2
3

4
6

7

C
6_

5
6

1.
46

1
0.

13
1

2
3

4
5

6

C
6_

6
6

1.
47

6
0.

02
2

1
2

3
4

7
12

C
6_

7
6

1.
48

6
0.

19
5

1
2

3
4

6
8

C
6_

8
6

1.
50

1
0.

13
1

2
3

4
6

12

C
6_

9
6

1.
51

6
0.

01
3

1
2

3
4

5
12

C
6_

10
6

1.
52

5
0.

19
5

1
2

3
4

6
9

C
6_

11
6

1.
54

0.
06

5
1

2
3

4
9

12

C
6_

12
6

1.
54

9
0.

02
2

1
2

3
8

9
10

C
7_

1
7

1.
38

8
0.

07
6

1
2

3
4

5
6

11

C
7_

2
7

1.
43

6
0.

07
6

1
2

3
4

6
7

8

C
7_

3
7

1.
44

7
0.

09
1

1
2

3
4

5
11

12

C
7_

4
7

1.
46

6
0.

22
7

1
2

3
4

5
6

7

C
7_

5
7

1.
49

4
0.

22
7

1
2

3
4

5
6

8

C
7_

6
7

1.
50

5
0.

07
6

1
2

3
4

5
6

12

C
7_

7
7

1.
51

2
0.

15
2

1
2

3
4

6
8

9

C
7_

8
7

1.
52

2
0.

07
6

1
2

3
4

6
9

12

C
8_

1
8

1.
42

0.
06

1
1

2
3

4
5

6
7

11

C
8_

2
8

1.
44

2
0.

12
1

1
2

3
4

5
6

8
11

C
8_

3
8

1.
46

4
0.

12
1

1
2

3
4

5
6

11
12

C
8_

4
8

1.
47

7
0.

24
2

1
2

3
4

5
6

7
8

C
8_

5
8

1.
48

5
0.

12
1

1
2

3
4

5
6

7
12

C
8_

6
8

1.
49

9
0.

24
2

1
2

3
4

5
6

7
9

C
8_

7
8

1.
50

7
0.

06
1

1
2

3
4

5
6

8
12

C
8_

8
8

1.
51

2
0.

03
1

2
3

4
6

8
9

10

C
9_

1
9

1.
44

7
0.

09
1

1
2

3
4

5
6

7
8

11

Proteins. Author manuscript; available in PMC 2011 January 11.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng et al. Page 23

na
m

es
# 

of
ve

ct
or

s
D

pa
tte

rn
Pr

ob
ab

ili
ty

Ir
re

du
ci

bl
e 

ve
ct

or
 c

om
bi

na
tio

n 
(n

um
be

r 
i r

ep
re

se
nt

s v
ec

to
r 

e i
de

fin
ed

 in
 E

q.
 1

 a
nd

 sh
ow

n 
in

 F
ig

ur
e 

1)

C
9_

2
9

1.
46

4
0.

27
3

1
2

3
4

5
6

7
9

11

C
9_

3
9

1.
48

1
0.

27
3

1
2

3
4

5
6

7
8

12

C
9_

4
9

1.
49

1
0.

27
3

1
2

3
4

5
6

7
8

9

C
9_

5
9

1.
49

7
0.

09
1

1
2

3
4

5
6

7
9

12

C
10

_1
10

1.
46

9
0.

45
5

1
2

3
4

5
6

7
8

9
11

C
10

_2
10

1.
48

3
0.

45
5

1
2

3
4

5
6

7
8

9
12

C
10

_3
10

1.
49

1
0.

09
1

1
2

3
4

5
6

7
8

9
10

C
11

11
1.

47
7

1.
00

0
1

2
3

4
5

6
7

8
9

10
11

C
12

12
1.

47
7

1.
00

0
1

2
3

4
5

6
7

8
9

10
11

12

Proteins. Author manuscript; available in PMC 2011 January 11.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Feng et al. Page 24

Table II

The mean and standard deviation (std) values of RMSD and OP from superimposition of coordination clusters
containing m directional vectors (1≤m≤12) with the icosahedron model

# of vectors RMSD OP

Mean Std Mean Std

1 0 0 1 0

2 0.107 0.015 0.984 0.101

3 0.184 0.051 0.964 0.017

4 0.223 0.045 0.949 0.022

5 0.251 0.050 0.936 0.024

6 0.271 0.052 0.927 0.027

7 0.281 0.044 0.922 0.023

8 0.286 0.039 0.920 0.022

9 0.289 0.039 0.918 0.021

10 0.301 0.042 0.911 0.023

11 0.309 0.047 0.901 0.027

12 0.353 0.051 0.881 0.031
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Table III

Summary of the linear regression model: 

Estimate Std. Error T statistics p-value

A 3.10 0.58 5.36 1.60e-06

b1 −2.86 0.78 −3.68 5.3e-04

b2 0.61 0.26 2.32 0.024

b3 0.51 0.08 6.71 1.03e-08

Residual standard error: 0.0976 on 56 degrees of freedom

Multiple R-squared: 0.7499, Adjusted R-squared: 0.7365

F-statistic: 55.98 on 3 and 56 DF, p-value: < 2.2e-16

A p-value less than 0.05 means high significance.
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