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PARTITION PROBLEMS IN HIGH DIMENSIONAL BOXES

MATIJA BUCIC, BERNARD LIDICKÝ, JASON LONG, AND ADAM ZSOLT WAGNER

Abstract. Alon, Bohman, Holzman and Kleitman proved that any partition of a d-dimensional

discrete box into proper sub-boxes must consist of at least 2d sub-boxes. Recently, Leader,

Milićević and Tan considered the question of how many odd-sized proper boxes are needed

to partition a d-dimensional box of odd size, and they asked whether the trivial construction

consisting of 3d boxes is best possible. We show that approximately 2.93d boxes are enough,

and consider some natural generalisations.

1. Introduction

The following lovely problem, due to Kearnes and Kiss [4, Problem 5.5], was presented at the

open problem session at the August 1999 meeting at MIT that was held to celebrate Daniel

Kleitman’s 65th birthday [8]. A set of the form

A = A1 × A2 × . . .× Ad,

where A1, A2, . . . , Ad are finite sets with |Ai| ≥ 2 will be called here a d-dimensional discrete

box. A set of the form B = B1 ×B2 × . . .×Bd, where Bi ⊆ Ai for all i ∈ [d], is a sub-box of A.

Such a sub-box B is said to be proper if Bi 6= Ai for every i. The question of Kearnes and Kiss

was as follows: can the box A = A1 × A2 × . . .× Ad be partitioned into fewer than 2d proper

sub-boxes?

Within a day, Alon, Bohman, Holzman and Kleitman solved [1] this problem. Their eventual

distillation of the proof, which we present in Section 2, is a “proof from the book”.

Theorem 1.1 (Alon, Bohman, Holzman, Kleitman [1]). Let A be a d-dimensional discrete box,

and let {B1, B2, . . . , Bm} be a partition of A into proper sub-boxes. Then m ≥ 2d.

The following interesting question was recently posed by Leader, Milićević and Tan [7]. Say

that the d-dimensional box A = A1 × A2 × . . . × Ad is odd if each |Ai| is odd (and finite).

Similarly, say that the sub-box B = B1 ×B2 × . . .×Bd is odd if |Bi| is odd for all i. It is easy

to see that given a d-dimensional odd box A, there exists a partition of A into 3d odd proper

sub-boxes, by partitioning each side into three odd parts and taking all possible products.

Question 1.2 (Leader, Milićević, Tan [7]). Let A be a d-dimensional odd box, and let {B1, B2, . . . , Bm}
be a partition of A into odd proper sub-boxes. Does it follow that then m ≥ 3d?.

Our first result is that the answer to this question is ‘no’:

Theorem 1.3. Let d ∈ Z+ be divisible by 3. Then there exists a partition of [5]d into 25d/3 ≤
2.93d odd proper sub-boxes.

2010 Mathematics Subject Classification. Primary 05D05; Secondary 05B45.
The first author was supported in part by SNSF grant 200021-175573.

The second author was supported in part by NSF grant DMS-1600390.

1

ar
X

iv
:1

80
5.

11
27

8v
2 

 [
m

at
h.

C
O

] 
 3

0 
Ju

n 
20

18



The proof is based on an example which shows that it is possible to partition [5]3 into 25

odd proper sub-boxes, see Figure 1. We originally found examples with the help of a computer,

but the example presented here was found by hand, keeping in mind certain properties of the

examples provided by the computer. The solution is not unique.

Figure 1. 25 odd boxes partitioning [5]3
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The situation changes, however if we require the odd boxes in our partition to be products of

intervals. Say that the box B = B1 ×B2 × . . .×Bd is a brick if for each i ∈ {1, 2, . . . , d} there

exist integers i0, i1 with i0 ≤ i1, such that Bi = {i0, i0 + 1, . . . , i1}. As examples, consider the

following two boxes:

• The set B = {2, 3, 4} × {4} × {1, 6, 7} is an odd proper sub-box of [7]3 but it is not a

brick, as {1, 6, 7} does not have the required form.

• The set B = {2, 3, 4} × {3, 4} is a proper brick contained in [5]2. However it is not odd,

as |{3, 4}| = 2.

Our next result shows that the answer to Question 1.2 is ‘yes’ under the additional assumption

that the sub-boxes are in fact proper, odd bricks.

Theorem 1.4. Let n ≥ 2 be odd, and d ≥ 1 arbitrary integer. Let {B1, B2, . . . , Bm} be a

partition of [n]d into proper, odd bricks. Then m ≥ 3d.

There are a number of natural generalisations of this question. In this paper we shall consider

a weakening of the parity constraint. A key property enforced by a partition into odd, proper

boxes is that any axis-parallel line through [n]d intersects at least 3 distinct sub-boxes, with the

result that the most obvious construction involves dividing each dimension into 3 parts and

taking the resulting 3d sub-boxes. It is therefore natural to pose the following question, which

we refer to as the k-piercing problem.
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Figure 2. 8 bricks in two dimensions satisfying the 3-piercing property.

Question 1.5 (k-piercing). Let n ≥ k and d ≥ 1 be integers. Let {B1, B2, . . . , Bm} be a

partition of [n]d into proper boxes with the property that every axis-parallel line intersects at

least k distinct Bi (we call this the k-piercing property). How small can m be?

This question can obviously be phrased in a continuous setting, replacing [n] with the interval

[0, 1] and eliminating n altogether. For simplicity we shall not do this, but instead we will

generally present bounds on m as a function of k and d only by considering n large enough (for

most of our results it is sufficient to take n > 3k).

The 2-piercing problem corresponds precisely to the original problem of Kearnes and Kiss,

and so the bound m ≥ 2d holds. However, Theorem 1.3 tells us that m < 3d when k = 3. In

fact the easy observation that 3d cannot be a lower bound follows from a simple 2-dimensional

construction shown in Figure 2.

Our later results will concentrate on the k-piercing problem. We show, perhaps surprisingly,

that m is bounded by cdk for some c which is independent of k.

Theorem 1.6. Let k ≥ 2 and d ≥ 1 be integers. For n large enough there exists a partition

{B1, . . . , Bm} of [n]d into proper boxes having the k-piercing property with m ≤ 15d/2k.

Recall that the answer to Question 1.2 changes fundamentally when boxes are replaced with

bricks, with the trivial construction becoming best possible. In light of this, we also consider the

special case of Question 1.5 when all the boxes are assumed to be bricks. We obtain a similar

result, even under this additional restriction.

Theorem 1.7. Let k ≥ 2 and d ≥ 1 be integers. For n large enough there exists a partition

{B1, . . . , Bm} of [n]d into proper bricks having the k-piercing property with m ≤ 3.92dk.

Both proofs involve building an intermediate partition coming from a low-dimensional example

and then solving a smaller instance of the same problem within each part. It seems almost

certain that better examples exist, and in fact it is not out of the question that m = (2 + o(1))d

for every fixed k, in both regimes.

For the lower bounds, there is a simple inclusion-exclusion argument which shows m ≥ d2dk,

but this only applies for bricks. With boxes, lower bounds are difficult to obtain, as neither

the argument mentioned above nor the one used to prove Theorem 1.1 seem to extend to this

problem. In fact, we fail to obtain any lower bound of the form (1 + ε)dk for any ε > 0. Such a

bound almost certainly holds, and this presents a very interesting open problem.
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In this setting even the 2-dimensional case is not easy to resolve. The upper bound of

m ≤ 4k − 4 follows from the left image in Figure 3 and is easily seen to be tight in the case of

bricks. With the aim of showing that this is best possible even for boxes, we introduce a graph

theory question of an extremal flavour and solve it asymptotically. This gives the following

result.

Proposition 1.8. Let {B1, . . . , Bm} be a minimal partition of [n]2 into proper sub-boxes satis-

fying the k-piercing property. Then, assuming n ≥ 2k − 2 we have m = (4 + ok(1))k.

This short paper is organized as follows. In Section 2 we give some set-up and preliminary

observations. In Section 3 we prove Theorem 1.3 and Theorem 1.4. In Section 4 we consider

the k-piercing problem and present our results, including Theorem 1.6, Theorem 1.7 and

Proposition 1.8. A selection of open questions are given in Section 5.

Before beginning with the set-up for our investigations, we draw attention to other variants

of the problem which have been considered in the literature, including geometrical results

concerning the minimal partitions obtained in Theorem 1.1 [6] and extensions of these ideas in

the context of cube tiling [5].

2. Set-up and previous results

We begin this section by giving the proof of Alon, Bohman, Holzman and Kleitman of

Theorem 1.1, as presented in [8].

Proof of Theorem 1.1. Let A = A1 × A2 × . . . × Ad be a d-dimensional discrete box and let

{B1, B2, . . . , Bm} be a partition of A into proper sub-boxes, where Bj = Bj
1 ×B

j
2 × . . .×B

j
d for

all j. Select sets Ri, i ∈ {1, 2, . . . , d}, independently, uniformly at random amongst all odd-sized

subsets of Ai, and let R := R1 ×R2 × . . .×Rd.

For j ∈ {1, 2, . . . ,m}, let Xj be the indicator function of the event that |Bj ∩R| is odd, and

set X =
∑m

j=1Xj. Then we have that the expectation of Xj satisfies

E(Xj) = P
(
|Bj ∩R| is odd

)
=

d∏
i=1

P
(
|Bj

i ∩Ri| is odd
)

= 2−d,

where we have used the observation that half of the odd cardinality subsets of Ai intersect Bj
i in

an odd number of elements. By linearity of expectation we have E(X) = m2−d. Note also that

X ≡
∑
j

Xj ≡
∑
j

|Bj ∩R| ≡ |R| ≡ 1 mod 2.

Hence X ≥ 1 with probability 1, implying that E(X) ≥ 1 and so m ≥ 2d as claimed. �

Let fodd(n, d) denote the number of odd proper sub-boxes required to partition the box [n]d.

Note that it is easily seen from Theorem 1.1 that whenever n ≥ 2 is even we have fodd(n, d) = 2d.

Hence we will always assume that the first argument of fodd is odd. Using this notation,

Theorem 1.3 simply states that if d ≥ 3 is divisible by 3 then fodd(5, d) ≤ 25d/3.

Note first that if m ≥ n are odd integers, and B is a partition of [n]d into odd proper sub-boxes,

then one can obtain a partition of [m]d into |B| odd proper sub-boxes by identifying the element

4



{n} with the interval {n, n+ 1, . . . ,m}. Hence if 2 < n ≤ m are odd integers and d ≥ 1 then

fodd(n, d) ≥ fodd(m, d). (1)

Note that if B1 and B2 are partitions of [n]d1 and [n]d2 respectively into odd boxes, then B1×B2
is a partition of [n]d1+d2 into |B1| · |B2| odd boxes. Hence the function fodd satisfies

fodd(n, d1 + d2) ≤ fodd(n, d1) · fodd(n, d2) (2)

for all n ≥ 2 and d1, d2 ≥ 1. Since by Theorem 1.1 we have that fodd(n, d) ≥ 2d for all n, d,

Fekete’s lemma [2] can be applied. It follows that for every n ≥ 2, there exists a nonnegative

constant αn depending only on n, such that fodd(n, d) = (αn + od(1))d, where od(1) → 0 as

d→∞.

By inequality (1) the sequence (αn)n∈N is monotone decreasing. An interesting open question

is whether the limit of the sequence on the odd integers is equal to two or not – see Section 5

for more details.

Note that these considerations apply equally to the k-piercing problem, showing that for

fixed k the minimum number of boxes in a partition with the k-piercing property is at least

(βk,n + od(1))d for some monotone decreasing sequence (βk,n)n∈N. Letting βk = limn→∞ βk,n,

Theorem 1.6 shows that βk ≤ 151/2 for all k. Similarly, one can define γk for the case of bricks,

in which case Theorem 1.7 implies γk ≤ 3.92.

Let us denote by pbox(n, d, k) the answer to Question 1.5 and by pbrick(n, d, k) the answer to the

same question, but restricted to bricks. Let pbox(d, k) = limn→∞ pbox(n, d, k) and pbrick(d, k) =

limn→∞ pbrick(n, d, k), which both exist by the above observations. As any brick is a box, we know

that pbox(d, k) ≤ pbrick(d, k). Note that with the above definitions pbrick(d, k) = (βk + od(1))d

and pbox(d, k) = (γk + od(1))d.

The case of k = 2 is resolved completely by Theorem 1.1 as there is a trivial partition into 2d

bricks, by splitting the original box into two along each dimension, implying pbrick(d, 2) ≤ 2d.

On the other hand, a partition being 2-piercing is equivalent to it consisting only of proper

boxes, so Theorem 1.1 implies that 2d ≤ pbox(d, 2). In particular, this implies a very surprising

result that for k = 2 the answer is the same for boxes and bricks: pbox(d, 2) = pbrick(d, 2) = 2d.

3. Partitioning into odd boxes

We start with proving the upper bound, given by Theorem 1.3.

Proof of Theorem 1.3. Note that by inequality (2), it suffices to show that fodd(5, 3) ≤ 25. That

is, we seek a partition of [5]3 into 25 proper odd boxes. This partition can be seen on Figure 1.

The list of the coordinates of the 25 boxes can be found in the appendix.

This solution was found by phrasing the problem as an integer program, with one (Boolean)

variable for every possible odd sub-box, and one constraint per coordinate saying that the sum

of variables that correspond to boxes which contain this point is one. We then used Gurobi [3],

a commercially available solver, to find the counterexample. �

We now turn to lower bounds, starting with the easy observation that for each fixed n we

have αn > 2.

5



Proposition 3.1. Let n > 2 be odd, and d ≥ 1. Then we have the lower bound

fodd(n, d) ≥
(

2 +
1

2n−2 − 1

)d

.

Proof. The proof of Proposition 3.1 is a trivial modification of the proof of Alon, Bohman,

Holzman and Kleitman of Theorem 1.1. We simply take the sets Ri to be uniformly chosen at

random amongst proper, odd-sized subsets of [n]. That is, Ri is a uniformly random element of

the set {S ⊂ A : S 6= A and |S| is odd}. Define Xj, X and R as in the proof of Theorem 1.1

and note that

E(Xj) = P
(
|Bj ∩R| is odd

)
=

(
2n−2 − 1

2n−1 − 1

)d

.

As before we have that X ≥ 1 with probability 1, hence E(X) = mE(Xj) ≥ 1. After rearranging,

this gives the required result. �

Note that Proposition 3.1 simply says that αn ≥ 2 + 1
2n−2−1 for all odd n, but this sequence

of lower bounds on the αn-s converges to two.

We will now consider the case where the members of our partition are proper, odd bricks. The

idea behind the proof of Theorem 1.4 is to remove the ‘top’ and ‘bottom’ layers of a partition

and prove that the number of remaining bricks has to be large, since their projection onto the

first d− 1 layers forms a partition of a d− 1-dimensional odd box. While this is not quite true,

this proof method can be made to work by considering a stronger induction hypothesis.

Proof of Proposition 1.4. Let n ≥ 2 be odd, d ≥ 1 arbitrary integer. We will prove the stronger

claim that if B = {B1, B2, . . . , Bm} is a set of odd proper bricks that cover every element of

[n]d an odd number of times, then m ≥ 3d. The proof goes by induction on d.

Let n, d,B be given. For any brick B ∈ B let B = B1 × · · · × Bd where Bi are odd length

intervals. Let C,D ⊂ B be defined as

C =

Bi : Bi ∩

[n]× [n]× . . .× [n]︸ ︷︷ ︸
d−1

×{1}

 6= ∅

,
and

D =

Bi : Bi ∩

[n]× [n]× . . .× [n]︸ ︷︷ ︸
d−1

×{n}

 6= ∅

.
Note that C ∩ D = ∅, as all Bi-s are proper bricks. Moreover, as elements of C cover every

point of [n]d−1 × {1} an odd number of times, by induction we have |C| ≥ 3d−1, and similarly

|D| ≥ 3d−1. Remains to show that |B \ (C ∪ D)| ≥ 3d−1.

For every point (i1, i2, . . . , id) ∈ [n]d and any family of bricks E , denote by xi1,i2,...,id(E) the

number of bricks in E that contain {i1} × {i2} × . . . × {id}, and note that by assumptions

xi1,i2,...,id(B) is odd for all choices of the ij-s.

For all (i1, i2, . . . , id−1) ∈ [n]d−1 define the quantity

yi1,i2,...,id−1
=

n∑
j=1

xi1,i2,...,id−1,j(B \ (C ∪ D)),
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and note that yi1,i2,...,id−1
is odd for all choices of i1, . . . , id−1. Indeed, as C ∩ D = ∅

yi1,i2,...,id−1
=

n∑
j=1

xi1,i2,...,id−1,j(B)−
n∑

j=1

xi1,i2,...,id−1,j(C)−
n∑

j=1

xi1,i2,...,id−1,j(D)

=
n∑

j=1

xi1,i2,...,id−1,j(B)−
∑
C∈C

n∑
j=1

1((i1, i2, . . . , id−1, j) ∈ C)−
∑
D∈D

n∑
j=1

1((i1, i2, . . . , id−1, j) ∈ D)

=
n∑

j=1

xi1,i2,...,id−1,j(B)−
∑
C∈C

|Cd| −
∑
D∈D

|Dd|,

where 1(·) denotes the indicator function of an event.

Now as Cd, Dd are odd size intervals each term in the above sums is odd, so the total residue

mod 2 is n− |C| − |D|, which is odd.

Consider the projection of the bricks in B \ (C ∪ D) onto the first d − 1 coordinates and

note that it induces an odd cover of a d− 1 dimensional odd cube, as follows. For any brick

B ∈ B \ (C ∪ D) define π(B) := B1 × B2 × . . .× Bd−1 to be the projection of the box B onto

the first d− 1 coordinates. For all (i1, i2, . . . , id−1) ∈ [n]d−1 define the quantity

zi1,i2,...,id−1
=

∑
B∈B\(C∪D)

1((i1, i2, . . . , id−1) ∈ π(B)).

Observe that

zi1,i2,...,id−1
≡ yi1,i2,...,id−1

mod 2

for all choices of coordinates, and hence all zi1,i2,...,id−1
-s are odd. Since the set of bricks

{π(B) : B ∈ B \ (C ∪ D)}

form a cover of [n]d−1 with each point covered zi1,i2,...,id−1
times, it follows by induction that

|B \ (C ∪ D)| ≥ 3d−1 and the proof is complete. �

4. Piercing

In this section we will consider piercing problems related to Question 1.5. We start by giving

some simple bounds, derived by generalising the arguments used for k = 2, which illustrate

various difficulties that arise. In the following subsections we give various improvements to these

bounds.

In the case of bricks, observe that a single brick of the partition that does not contain a corner

vertex can be incident to only one edge of the original cube, as otherwise it would not be proper

and thus fail the k-piercing property (even for k = 2). Also, for each edge there needs to be at

least k boxes which are incident to it. Combining these two observations we deduce that there

needs to be at least d2d−1(k − 2) different non-corner boxes, as there are d2d−1 edges. Including

the additional 2d corner boxes this implies that there are at least d2d−1(k − 2) + 2d different

boxes. On the other hand, generalising the partition used for k = 2, splitting the original cube

into k parts along each dimension obtains a k-piercing partition into kd bricks. So we have

shown the following two easy bounds:

d2d−1(k − 2) + 2d ≤ pbrick(d, k) ≤ kd. (3)

7



In the case of boxes, the lower bound no longer applies, as almost all the bricks counted as

different above might become parts of a single box. The same kind of argument only gives

pbox(d, k) ≥ d(k − 1) + 1 by fixing a corner and counting all the boxes incident to an edge

containing this corner, which need to be different. Furthermore, it is not clear how to exploit

the k-piercing property in the argument used in Theorem 1.1 for k > 2. However Theorem 1.1

is directly applicable in the case k = 2, which gives a lower bound of 2d which then holds for

all k ≥ 2. From the other direction, it is also not clear how one could exploit the freedom

afforded by using boxes instead of bricks when trying to find a partition, and in fact when k = 2

this turns out not to be possible. We can, however, reuse the bound for bricks to obtain the

following simple bounds:

max(k(d− 1) + 1, 2d) ≤ pbox(d, k) ≤ kd. (4)

Note that the lower bound for pbox highlights a disconnect between our methods for dealing

with the two most extreme regimes: firstly the case of k fixed and d→∞ in which the lower

bound is 2d, and secondly the case of d fixed and k →∞ in which the bound of k(d− 1) + 1 is

relevant. We shall give our results in terms of both k and d so that they apply generally, and

indeed the upper bounds we shall describe are the best we know across all regimes. Our lower

bound efforts, however, are most relevant for the latter scenario (when d is small compared to

k).

In the following subsections we will describe our various improvements to the above bounds.

In the first subsection we will discuss upper bounds on pbrick(d, k) and pbox(d, k) and in the

second subsection we discuss lower bounds.

4.1. Upper bounds for the k-piercing problem. In this section we will present the proof

of Theorems 1.6 and 1.7, giving a major improvement over the upper bound in (3) and (4).

We begin by presenting a simple partition into at most 4dk bricks that satisfies the k-piercing

property. This construction is so simple and natural that one might imagine that it could be best

possible. This is not the case, however, and we will go on to present two different approaches

for obtaining improvements in the base of the exponent, one of which is specific for boxes and

gives a slightly better bound.

We define fd(a1, . . . , ad) to be the minimum size of a partition of [n]d into boxes so that every

line in dimension i hits at least ai boxes, (we refer to this as the (a1, . . . , ad)-piercing condition).

In the first two dimensions, we split [n]d into 4 quadrants. In the top left and bottom right

quadrants we place a construction satisfying the (1, k − 1, k, . . . , k)-piercing condition. In the

bottom left and top right quadrants we place a construction satisfying the (k − 1, 1, k, . . . , k)-

piercing condition. This is shown in Figure 3. This gives a construction satisfying the k-piercing

condition, and observing that fd(1, k, . . . , k) ≤ fd−1(k− 1, k, . . . , k) ≤ fd−1(k, k, . . . , k) gives the

following bound for d ≥ 2:

fd(k, . . . , k) ≤ 4fd−1(k, . . . , k).

Combining this with the fact that f1(k) = k we find that fd(k, . . . , k) ≤ 4dk.

In particular this shows:

pbox(d, k) ≤ pbrick(d, k) ≤ 4dk (5)

So, in the notation introduced in Section 2, we have γk ≤ βk ≤ 4.
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Figure 3. On the left we see a k-piercing configuration in two dimensions with

4(k − 1) bricks. On the right, we use this idea to give a k-piercing construction

with k4d boxes. In the first two dimensions we divide the cube into quadrants

and then place optimal constructions in each quadrant satisfying the piercing

conditions shown.


1

k − 1

k
...

k




k − 1

1

k
...

k




1

k − 1

k
...

k



k − 1

1

k
...

k



a) pbrick(2, k) ≤ 4(k − 1) b) pbrick(d, k) ≤ 4pbrick(d− 1, k)

... . . .

. . .
...

k − 1

k − 1

k − 1

k − 1

One may wonder if these bounds are tight, and the construction describes above is essentially

best possible (at least in the case of bricks). We will now show that this is not the case, and

give two different approaches for improving the base of the exponent further. In both following

subsections we will reuse the general idea of splitting the cube along a couple of dimensions.

In the following subsection we work with bricks and prove Theorem 1.7 and in the subsequent

subsection we exploit a simple observation which holds for boxes but not for bricks to get an

even better bound.

4.1.1. Bricks. In some sense a more surprising part of the result (5) is the fact that for a fixed

dimension d both pbox(d, k) and pbrick(d, k) are linear in k, but using the sub-multiplicative

inequalities such as (2) can never give results linear in k. The idea of finding a small example

and then using these inequalities as was done in the previous section for fodd can only ever give

something interesting when k is rather small. However, the idea behind the argument giving (5)

is to use small examples in a different manner. The following observation gives a more general

view of this idea.

Given a partition of [n]d into bricks A1, . . . , Am such that we can assign to each Ai a d-tuple

(ai,1 . . . , ai,d) of positive integers such that for any line in j-th dimension the sum of ai,j, with i

ranging over the bricks crossed by this line, is at least k. Whenever we have such a partition we

obtain that fd(k, . . . , k) ≤
∑m

i=1 fd(ai,1, . . . , ai,d) as we can solve the corresponding subproblem

within each brick of the partition. We will call such a partition intermediate.
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The natural goal is to find small examples of intermediate partitions. For example, given

a k-piercing example for small d, if we can group several bricks into sets Ai to obtain an

intermediate partition then we obtain an upper bound on fd(k, . . . , k). For instance, in the proof

of (5), we used the example on the left of Figure 3 which gives a natural grouping into 4 bricks,

yielding the intermediate example on the right of this figure.

The following lemma gives a way of obtaining, from an intermediate partition in d dimensions,

a new intermediate partition in d + 1 dimensions in a slightly better way than the trivial

approach of stacking two copies on top of one another.

Lemma 4.1. Let A1, . . . , Am be an intermediate partition of [n]d. Let X and Y be corners of

the cube such that the largest proper sub-brick containing X covers w.l.o.g. A1, . . . , As and let

Ar be the brick containing corner Y. Then

fd+1(k, . . . , k) ≤
s∑

i=1

fd+1(ai,1 . . . , ai,d, 1) +
m∑

i=s+1

fd+1(ai,1 . . . , ai,d, k − 1)+

m∑
i=1,i 6=r

fd+1(ai,1 . . . , ai,d, 1) + fd+1(ar,1 . . . , ar,d, k − 1).

Proof. We split the cube in two parts along the d+ 1-st dimension. We use the given partition

for both parts, but with the top part rotated in such a way that Y corresponds to X. We

then rescale the top partition in such a way that Ar covers all of A1, . . . , As in the original

partition (note that his may require a minor increase in the n we use). We add k − 1 for the

last dimension of Ar in the top part and all the bricks in the lower part except A1, . . . , As, we

add 1 for the remaining bricks. This new partition is a new intermediate partition in d + 1

dimensions, as along first d dimensions all the lines satisfy the condition because we started

with an intermediate partition, and along the d+ 1’st, if it passes through any of A1, . . . As of

the lower part it will pass through Ar of the upper part so the sum will be at least 1 + k − 1

and, otherwise it will pass through some Ai, i ≥ s+ 1 in the lower part and something in the

upper part again giving sum at least k − 1 + 1. The inequality now follows from the above

observation. �

We now apply this lemma to the 5-part intermediate partition, derived from the one given in

Figure 3, and given in Figure 4. We obtain the 3-dimensional intermediate partition shown in

Figure 5.

In particular, this implies:

fd(k, . . . , k) ≤ 2fd(1, k − 1, k − 1, k, . . . , k) + 6fd(1, 1, k − 1, k, . . . , k) + 2fd(1, 1, k − 2, k, . . . , k)

Unfortunately, this bound still only implies fd(k, . . . , k) ≤ (4 + od(1))dk, but modifying this

partition slightly, we consider Figure 6 and apply the lemma once again. This does achieve an

improvement in the base of the exponential term.

In particular, we find:

fd(k, . . . , k) ≤8fd(1, 1, k − 1, k − 1, k, . . . , k) + 5fd(1, 1, k − 2, k − 1, k, . . . , k)+

8fd(1, 1, 1, k − 1, k, . . . , k) + 3fd(1, 1, 1, k − 2, k, . . . , k)
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Figure 4. The intermediate partition in 2 dimensions, to which we apply

Lemma 4.1. X is denoted by red circle, Y by a blue circle, the parts A1, . . . , As

are shaded red and Ar is shaded blue.

(
1

k − 1

)

(
k − 1

1

)

(
k − 2

1

)

(
1

k − 1

)

(
1

1

)

Figure 5. The intermediate partition in 3 dimensions, provided by the above lemma.
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 1
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1
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k − 1

1



Figure 6. The intermediate partition in 3 dimensions, to which we apply

Lemma 4.1. X is denoted by red circle, Y by a blue circle, the parts A1, . . . , As

are shaded red and Ar is shaded blue.
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Figure 7. An intermediate partition in 4 dimensions. The third and fourth

dimensions move between the rectangles horizontally and vertically respectively.
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This already suffices to give an example with at most about 3.97dk bricks. However, since

the red bricks have large piercing values in all but one dimension, it turns out that a further

manual step can be made before applying Lemma 4.1. In particular, using the partition given

in Figure 7 we obtain the following slight improvement:

fd(k, . . . , k) ≤10fd(1, 1, k − 1, k − 1, k, . . . , k) + 3fd(1, 1, k − 2, k − 1, k, . . . , k)+

6fd(1, 1, 1, k − 1, k, . . . , k) + 3fd(1, 1, 1, k − 2, k, . . . , k).

This inequality implies

fd(k, . . . , k) ≤ 13fd−2(k, . . . , k) + 9fd−3(k, . . . , k)

which in turn implies fd(k, . . . , k) ≤ xd0k where x0 is the largest root of x3 − 13x− 9, x0 ≈ 3.91.

In particular, this shows that γk ≤ βk ≤ x0.

For small values of k the above inequality actually implies a somewhat stronger result, provided

we take more care with the k − 1, k − 2 terms. E.g. for k = 3 we get:

fd(3, . . . , 3) ≤10fd(1, 1, 2, 2, 3, . . . , 3) + 9fd(1, 1, 1, 2, 3, . . . , 3) + 3fd(1, 1, 1, 1, 3, . . . , 3)

≤(10 · 4 + 9 · 2 + 3)fd−4(3, . . . , 3) = 61fd−4(3, . . . , 3)
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Figure 8. A square can be covered by 3 boxes, but not with 3 bricks.

Figure 9. An intermediate partition based on the above observation. The blue

box is labelled
(

1
1

k−1

)
, red and orange are labelled

(
k−1
1
1

)
, green is labelled

(
1

k−1
1

)
and yellow is labelled

(
1

k−1
1

)
. All other boxes are in fact bricks.
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Where we repeatedly used fd(2, a1, . . . , ad−1) ≤ 2fd(1, a1, . . . , ad−1) = fd−1(a1, . . . , ad−1), which

follows by taking two identical copies of the d− 1 dimensional example. This inequality implies

γ3 ≤ β3 ≤ 4
√

61 ≈ 2.79.

4.1.2. Boxes. It is highly unclear how one could use the additional freedom afforded by using

boxes instead of bricks. The only ways that we found exploits the fact that it is possible to

cover a square using only three boxes, as shown in Figure 8. This allows us to obtain better

examples using boxes than the ones using bricks described above.

We will reuse the intermediate partition given in Figure 4 to obtain a new intermediate 3

dimensional partition which will use three copies of it stacked on top of each other such that in

each layer the copy of Ar incident to vertex Y is stretched to make one of the three boxes used to

cover a square in Figure 8 and divided into k−1 copies of itself along the third dimension, as shown

in Figure 9. This implies that fd(k, . . . , k) ≤ 9fd(1, 1, k − 1, k, . . . , k) + 6fd(1, 1, k − 2, k, . . . , k).

Proof of Theorem 1.6. The above inequality directly implies fd(k, . . . , k) ≤ 15fd−2(k, . . . , k),

showing γk ≤
√

15 ≈ 3.87 implying Theorem 1.6. �

4.2. Lower bounds. The lower bound on pbrick given in (3) seemed like having a good chance

of actually being the truth. For example, it is tight for all k in two dimensions, as the left

image in Figure 3 shows that pbrick(2, k) ≤ 4(k − 1), which matches the lower bound. In higher

dimensions it satisfies the recursive lower bound obtained by the inclusion-exclusion principle
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Figure 10. A graph in which every vertex is contained in a red Kk and a blue Kk.

red Kk−1

red Kk−1

blue Kk−1

blue Kk−1

red edges

red edges

blue edges blue edges

through analysing the number of bricks touching faces of dimensions from 0 to d−1; for example

the proof of the lower bound used only faces of dimensions 0 (corners) and 1 (edges). It turns

out however that 21 ≤ pbrick(3, 3) showing that the bound is not always tight. In fact, exploiting

this fact and the aforementioned inclusion-exclusion inequality one can obtain a lower bound,

for k = 3, which is by a constant factor better than (3). We omit further details as both parts

of the argument are quite cumbersome and result in only a very weak improvement.

The case of boxes seems more difficult, even in 2 dimensions. We conjecture that pbox(2, k) =

4(k − 1) (= pbrick(2, k)) and show that this is in fact asymptotically correct, as k gets large.

To this end we consider the following reduction. Given a partition of [n]2 with the k-piercing

property we construct an auxiliary graph with one vertex for each box. We colour the edge

between two vertices red if there exists a vertical line intersecting both boxes and blue if there

exists a horizontal line intersecting both boxes. Since the k-piercing constraint requires that

any line intersects at least k boxes, we see that every vertex in our auxiliary graph is both

contained inside a clique of at least k vertices with all edges coloured red and a clique of at least

k vertices with all edges coloured blue. We therefore formulate the following question, which we

find interesting in its own right.

Question 4.2. Let k ≥ 1 be an integer. What is the minimal N such that we can colour the

edges of a graph on N vertices red and blue such that every vertex belongs to a monochromatic

Kk of each colour?

Note that, by the above construction, the answer to the above question is an upper bound for

pbox(2, k). We conjecture that this N = 4(k − 1). A construction arising from the example in

the left image of Figure 3 which matches this bound can be seen in Figure 10. However, we

were only able to prove an asymptotic result.

Proposition 4.3. In Question 4.2 we have N ≥ (4 + ok(1))k.

Proof. Let R be the vertex set of a largest red clique and B the vertex set of a largest blue

clique in the graph. Note that |R ∩ B| ≤ 1, as each edge can only have one colour. Define

A0 = R \B and B0 = B \R. Let a0 = |A0| ≥ k − 1 and b0 = |B0| ≥ k − 1.

In general, let R and B be the vertex sets of a largest red and blue clique on G \ (A0 ∪ . . . ∪
Ai−1 ∪ B0 ∪ . . . ∪ Bi−1), respectively. As before, |R ∩ B| ≤ 1 and we define Ai = R \ B and

Bi = B \R. Let ai = |Ai| and bi = |Bi|.
14



Given a vertex v in A0 ∪ . . .∪Ai−1 it belongs to a blue k-clique. This clique can have at most

one vertex in each of A0, A1, . . . , Ai−1, one of which is v itself. Similarly, by choice of Bi we

know this clique can have at most bi + 1 vertices outside of A0 ∪ . . . ∪ Ai−1 ∪B0 ∪ . . . ∪Bi−1.

This implies that v has blue degree at least k − 1− (i− 1)− (bi + 1) = k − i− bi − 1 towards

B0 ∪ . . . ∪Bi−1. An analogous argument shows that any w ∈ B0 ∪ . . . ∪Bi−1 has red degree at

least k − i− ai − 1 towards A0 ∪ . . . ∪ Ai−1.

In particular, letting A = a0 + . . .+ ai−1 and B = b0 + . . .+ bi−1, this implies that

AB ≥ A(k − i− bi − 1) +B(k − i− ai − 1).

Now define ci−1 by A+B = ci−1(k − 1). Since there are at least ci−1(k − 1) + ai + bi vertices in

G. So we get

AB + Abi +Bai ≥ (k − i− 1)ci−1(k − 1).

For a fixed ci−1 the left-hand side is maximised for A = ci−1(k − 1)/2 − (ai − bi)/2 and

B = ci−1(k − 1)/2 + (ai − bi)/2. This gives

c2i−1(k − 1)2/4− (ai − bi)2/4 + (ai + bi)ci−1(k − 1)/2 + (ai − bi)2/2 ≥ (k − i− 1)ci−1(k − 1)

⇒ c2i−1(k − 1)2 + (ai − bi)2 + 2(ai + bi)ci−1(k − 1) ≥ 4(k − i− 1)ci−1(k − 1)

⇒ c2i−1(k − 1)2 + (ai + bi)
2 + 2(ai + bi)ci−1(k − 1) ≥ 4(k − i− 1)ci−1(k − 1)

⇒ (ci−1(k − 1) + ai + bi)
2 ≥ 4(k − i− 1)ci−1(k − 1).

Since ci(k − 1) = ci−1(k − 1) + ai + bi, we get

ci ≥ 2

√
k − i− 1

k − 1
ci−1 ≥ 21+1/2+...+1/2i

(
k − i− 1

k − 1

)1/2+1/4+...+1/2i

= 4× 2−1/2
i+1

(1− i/(k − 1))1−1/2
i+1

.

Choosing i = O(log(k)) gives the result. �

Proposition 1.8 follows immediately from this result, by the above reduction.

Note that Question 4.2 generalises naturally to t colours. The proof of Proposition 4.3 can be

easily modified to give a lower bound of (2t+ok(1))k for this generalisation, and the construction

on Figure 10 can also be modified to give an upper bound of 2t(k − 1). While the lower bound

for this question applies to the k-piercing question, giving a lower bound of (2d + od(1))k in

d-dimensions which does beat the trivial bound of d(k − 1) from the start of the section, this

bound is not particularly strong so we omit the full details. It seems that in two dimensions

Question 4.2 captures the difficulty of the k-piercing problem, while the generalised version does

not fully capture the difficulties of the higher dimensional piercing problem.

With this in mind we consider the following reduction. Given a k-piercing partition in d

dimensions, consider the complete graph Kn with vertices being boxes. We colour an edge

between two boxes in colour i if they are intersected by some d− 1 dimensional plane orthogonal
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to the i-th dimensional axis. This gives a colouring in d colours, such that every edge gets at

most d− 1 colours. Furthermore, every vertex is a part of a monochromatic Kt in each colour,

where t = pbox(d− 1, k). We shall use this to give the following lower bound.

Theorem 4.4.

pbox(d, k) ≥ e
√

d
4 (k − 1)

Proof. We consider the complement of the colouring of the Kn described in the previous

paragraph. In the complement each edge gets assigned only the colours it was not assigned in

the above colouring. As each edge had at most d− 1 colours, the new colouring assigns at least

one colour to each edge. Furthermore, for every vertex v and every colour c, v belongs to a set

of size t within which there is no edge of colour c.

We claim that this implies that for each colour there are at most (n− t)2 edges of this colour.

To see this, note that there needs to exist an independent set of size t in this colour and each of

the remaining n− t vertices can be incident to at most n− t edges of this colour.

As our new colouring needed to cover all the possible edges at least once, this implies that

d ≥ n(n− 1)

2(n− t)2

=⇒ n− 1 ≥
(

1 +
1√

2d− 1

)
(t− 1)

=⇒ pbox(d, k)− 1 ≥
(

1 +
1√

2d− 1

)
(pbox(d− 1, k)− 1).

This gives

pbox(d, k) ≥
d∏

i=2

(
1 +

1√
2i− 1

)
(k − 1) + 1

≥ e
∑d

i=2
1

2
√
2i (k − 1)

≥ e
1

2
√
2

∑d
i=2

1√
i (k − 1)

≥ e
√
d
4 (k − 1)

as claimed.

�

5. Conclusion and open problems

There are a large number of very interesting questions that remain in this area, and we shall

now list just a few.

It remains, of course, to determine the asymptotics of fodd. The most important question

seems to be the following.

Question 5.1. Is fodd(n, d) = (2 + o(1))d as n, d→∞?

One may also consider the original question of Kearnes and Kiss with a relaxation of the

condition that the boxes partition [n]d. In their paper [7], Leader, Milićević and Tan ask how

many proper boxes are required to form a double cover of [n]d, and specifically whether at least
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2d are required. A natural construction involves taking three copies of a partition of [n]d−1 and

taking the products of these with the sets {1, 2}, {2, . . . , n} and {1, 3, 4, . . . , n} respectively,

giving a double cover of size (3/2)2d. We can show that this construction is not best possible

(a simulated annealing approach found a double cover of size 11 in [3]3 and Gurobi did even

better by finding a construction of size 21 in [3]4), but we have not been able to beat 2d and the

question remains open.

Regarding the k-piercing problem, there are several possible angles. Again, the most important

question concerns improving the lower bound.

Question 5.2. Does there exist an ε > 0 such that for a fixed k we have pbox(d, k) ≥ (2 + ε)d?

The analogous question for pbrick would be a natural first step, interesting in its own right.

Along similar lines is the regime where d is fixed and k is allowed to grow. As discussed in

Section 4, the bound for this problem is always linear in k, but finding the constant of linearity

seems hard.

Question 5.3. Let d be fixed so that pbox(d, k) = (Cd + ok(1))k. How does Cd grow with d?

Must Cd be exponential in d?

As noted in Section 4, we are only able to show that e
√
d
4 (k− 1) ≤ Cd ≤ 15d/2. Proposition 1.8

shows that C2 = 4, but finding C3 is already beyond our methods. Answering this question

would directly extend Theorem 1.1 and therefore probably requires some interesting new ideas.

To finish, we shall describe one last problem which is of particular interest. We observe that in

the k-piercing problem the requirement that the boxes Bi partition [n]d can be dropped without

trivialising the question, provided that we maintain the constraint that the Bi are disjoint. In

particular, we could ask the following question.

Question 5.4. Let n ≥ k and d ≥ 1 be integers. Let {B1, B2, . . . , Bm} be a collection of

disjoint proper boxes in [n]d with k-piercing property. What lower bounds can be shown for m?

In particular, do we have m ≥ 2d?

When k = 2 this generalises the original question of Kearnes and Kiss, however the proof of

Theorem 1.1 relies on the Bi forming a partition and so the same idea cannot be used. Indeed

the authors know of no approach that gives a bound better than (1 + o(1))d for this question,

although computer search finds no examples with m < 2d.
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6. Appendix

6.1. List of coordinates of boxes in Figure 1.

Box(1) = {1,2,3} x {1,2,3} x {1}
Box(2) = {1,2,3} x {1,2,3} x {2}
Box(3) = {2,4,5} x {1,4,5} x {3}
Box(4) = {2,3,5} x {2,3,5} x {4}
Box(5) = {1,2,4} x {1,2,4} x {5}
Box(6) = {1,2,5} x {1} x {4}
Box(7) = {1} x {1,2,5} x {3}
Box(8) = {1} x {2,4,5} x {4}
Box(9) = {2,4,5} x {2} x {3}
Box(10) = {2,4,5} x {3} x {3}
Box(11) = {2,3,4} x {3} x {5}
Box(12) = {3} x {2,3,4} x {3}
Box(13) = {3} x {2,4,5} x {5}
Box(14) = {4} x {1,2,3} x {1,2,4}
Box(15) = {5} x {1,2,3} x {1,2,5}
Box(16) = {2,4,5} x {4} x {1,2,4}
Box(17) = {2,4,5} x {5} x {1,2,5}
Box(18) = {1} x {4} x {1,2,3}
Box(19) = {1} x {5} x {1,2,5}
Box(20) = {3} x {4} x {1,2,4}
Box(21) = {3} x {5} x {1,2,3}
Box(22) = {1} x {3} x {3,4,5}
Box(23) = {3} x {1} x {3,4,5}
Box(24) = {4} x {5} x {4}
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Box(25) = {5} x {4} x {5}
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