Rare Earth Arylsilazido Compounds with Inequivalent Secondary Interactions

Kasuni C. Boteju
Iowa State University and Ames Laboratory, kasuni@iastate.edu

Suchen Wan
Beijing Normal University

Amrit Venkatesh
Iowa State University and Ames Laboratory, amritv@iastate.edu

Arkady Ellern
Iowa State University, ellern@iastate.edu

Aaron Rossini
Iowa State University and Ames Laboratory, arossini@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the Inorganic Chemistry Commons, and the Materials Chemistry Commons

Recommended Citation

Boteju, Kasuni C.; Wan, Suchen; Venkatesh, Amrit; Ellern, Arkady; Rossini, Aaron; and Sadow, Aaron D., "Rare Earth Arylsilazido Compounds with Inequivalent Secondary Interactions" (2018). *Ames Laboratory Accepted Manuscripts*. 180.
https://lib.dr.iastate.edu/ameslab_manuscripts/180

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Rare Earth Arylsilazido Compounds with Inequivalent Secondary Interactions

Abstract
A new bulky silazido ligand, –N(SiHMe2)Dipp (Dipp = C6H3-2,6-iPr2) supports planar, three-coordinate homoleptic rare earth complexes Ln{N(SiHMe2)Dipp}3 (Ln = Sc, Y, Lu) that each contain three secondary Ln⇌HSi interactions and one agostic CH bond. Y{N(SiHMe2)Dipp}3 and acetophenone react via hydrosilylation, rather than by insertion into the Y–N bond or enolate formation.

Disciplines
Chemistry | Inorganic Chemistry | Materials Chemistry

Authors
Kasuni C. Boteju, Suchen Wan, Amrit Venkatesh, Arkady Ellern, Aaron Rossini, and Aaron D. Sadow
A new bulky silazido ligand, –N(SiMe₂)Dipp (Dipp = C₆H₅-2,6-i-Pr₂) supports planar, three-coordinate homoleptic rare earth complexes Ln[N(SiMe₂)Dipp]₂ (Ln = Sc, Y, Lu) that each contain three secondary Ln–HSi interactions and one agostic CH bond. Y[N(SiMe₂)Dipp]₃ and acetophenone react via hydrosilylation, rather than by insertion into the Y–N bond or enolate formation.

The hexamethyl disilazido group’s use as a ligand in homoleptic and heteroleptic complexes, which find myriad synthetic applications, spans the periodic table. This ligand is particularly useful in early metal and lanthanide chemistry because its steric properties lead to monomeric, reactive species. Interestingly, solid-state structures of trivalent lanthanide compounds Ln[N(SiMe₂)₃]₂ are pyramidal (Σ₃,₅ = 339–353°), whereas smaller M[N(SiMe₂)₃]₃ (M = Ti, V, Cr, Fe, Al, Ga, In) are planar. The scandum compound Sc[N(SiMe₂)₃]₃ is planar in the gas-phase but pyramidal in the solid state. These compounds, as well as those supported by the less hindered tetramethylsilazido, contain secondary interactions of the type Ln–HSi (R = Me, H) with groups beta to the metal center. However, these interactions are not sufficient to prevent additional solvent coordination or dimerization in homoleptic tetramethylsilazido rare earth compounds. Direct, but compelling, evidence for the existence of Ln–HSi interactions is provided by distorted ligand conformations in X-ray diffraction studies, reduced one-bond coupling constants (JHSi) in NMR spectra, or low energy Si-H stretching modes (νSiH) in infrared spectra. Bulkier disilazido ligands N(SiBuMe₂)SiMe₃ or N(SiBuMe₂)₂ form planar homoleptic lanthanide compounds.

The bulky silazido ligand N(SiMe₂)Dipp (Dipp = 2,6-disopropylphenyl) supports homoleptic divalent first row metal centers, and heteroleptic and homoleptic rare earth species, such as LuCl[N(SiMe₂)Dipp]·THF and La[N(SiMe₂)Dipp]₃.11,12 The latter compound adopts a pyramidal geometry at La (Σ₃,₅ = 337°). Less bulky aryl substitution also gives THF-coordinated or “ate”-type rare earth compounds, including Ln[N(SiMe₂)Ph]₃·THF (Ln = Y, Lu),11 and [YCl(N(SiMe₂)₂,6-C₆H₅Et)₂][Li(THF)].13 Alternatively, a combination of the large tBu and the small, β-SiH-containing SiHMe substituents in a silazido provides homoleptic Ln[N(SiHMe₂)₂tBu]₂ (Ln = Sc, Y, Lu, Er).14,15 Ln[N(SiHMe₂)₂tBu]₂ form pyramidal structures akin to Ln[N(SiMe₂)₃]₂, contain three bridging Ln–HSi in a C₅-symmetric structure, and will coordinate THF or Et₂O. The SiH group in N(SiHMe₂)₂tBu is reactive. For example, Cp₂Zr[N(SiHMe₂)₂tBu]X compounds react by H abstraction of the silicon hydride. The combination of an even larger substituent than tBu with the small SiHMe₂ could result in further SiH bond activation by pushing the smaller group closer to the metal center. To explore this idea, we constructed N(SiHMe₂)Dipp as a sterically off-balanced ligand.

The synthesis of HN(SiHMe₂)Dipp is modified from that of HN(SiMe₂)Dipp. Deprotonation of H₂NDipp by nBuLi in pentane generates Li[N(H)Dipp] as a white precipitate. This crude material and Me₃HSiCl react in diethyl ether to provide HN(SiHMe₂)Dipp (1; eqn (1)), which is isolated in good yield.

Deprotonation of 1 with nBuLi in pentane gives the desired lithium silazido Li[N(SiHMe₂)Dipp] (2; eqn (2)) as a white solid. Recrystallization from a saturated pentane solution at ~30 °C provides analytically pure crystalline material. The 1H NMR spectra of 1 and 2 contained resonances at 4.89 ppm (JHH = 199 Hz) and 5.09 ppm (JHH = 177 Hz), respectively, assigned to the...
SiH groups. The higher frequency chemical shift (δ_{SiH}) of 2, with respect to silazane 1, contrasts the lower δ_{SiH} in LiN(SiHMe)$_2$ and LiN(SiHMe)$_2$Bu compared to their silazanes (Table 1). The IR spectra for 1 and 2 revealed signals at 2112 cm$^{-1}$ and 2022 cm$^{-1}$, respectively, that were assigned to ν_{SiH}.

The isopropyl groups appeared as a broad singlet at 0.7 ppm to 2.3 ppm (1 H each) and twelve, partly overlapping resonances (1.63 ppm – 0.65 ppm) assigned to the methine and methyl moieties in the three distinct Dipp groups.

The reactions proceed in diethyl ether at low temperature, and $\text{Ln} \rightarrow$N(SiHMe)$_2$ provides the homoleptic tris(silazido) rare earth compounds LnN-SiH$_2$ compounds. The room temperature H NMR (in benzene-d$_6$) and IR spectroscopic properties of SiH groups in silazanes, disilazanes, lithium silazido, and rare earth silazido compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ_{SiH} (ppm)</th>
<th>ν_{SiH} (Hz)</th>
<th>ν_{SiH} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiN(SiHMe)$_2$Dipp</td>
<td>4.89</td>
<td>199</td>
<td>2112</td>
</tr>
<tr>
<td>LiN(SiHMe)$_2$Dipp</td>
<td>5.09</td>
<td>177</td>
<td>2022</td>
</tr>
<tr>
<td>HDippNN(SiHMe)$_2$I</td>
<td>4.82</td>
<td>170</td>
<td>2120</td>
</tr>
<tr>
<td>HDippNN(SiHMe)$_2$Ib</td>
<td>4.49</td>
<td>168</td>
<td>1990</td>
</tr>
<tr>
<td>HDippNN(SiHMe)$_2$Ia</td>
<td>4.82</td>
<td>182</td>
<td>2135 and 2104</td>
</tr>
<tr>
<td>HDippNN(SiHMe)$_2$Ia</td>
<td>4.49</td>
<td>168</td>
<td>2052</td>
</tr>
<tr>
<td>Sc[N(SiHMe)$_2$I]Dipp, (3)</td>
<td>5.43</td>
<td>143</td>
<td>2105, 2046, 1908</td>
</tr>
<tr>
<td>Y[N(SiHMe)$_2$I]Dipp, (4)</td>
<td>5.17</td>
<td>129</td>
<td>2107, 1934, 1883</td>
</tr>
<tr>
<td>Lu[N(SiHMe)$_2$I]Dipp, (5)</td>
<td>5.43</td>
<td>128</td>
<td>2108, 1942, 1877</td>
</tr>
</tbody>
</table>

*See references 15, 18.

The reactions proceed in diethyl ether at low temperature, and the products are isolated as donor-free and salt-free crystalline materials after extraction and crystallization from pentane. Their H NMR spectra, measured at room temperature in benzene-d$_6$, revealed one set of N(SiHMe)$_2$Dipp resonances. The isopropyl groups appeared as a well-resolved doublet and a septet in each spectrum of 3 – 5, indicating that the Dipp group rapidly rotates around the N–C bond at room temperature. The SiH signal appeared as a broad singlet in 3, but the spectra of 4 and 5 contained the expected septet splitting pattern.

The room temperature δ_{SiH} for 3 – 5 were even higher than the corresponding values in the lithium silazido starting material 2 (Table 1), and ν_{SiH} values were also significantly reduced (143 – 128 Hz). We noticed, however, that the ν_{SiH} values in 3 – 5 were larger than those in the related series LiN(SiHMe)$_2$Bu$_3$ ($\text{Ln} = \text{Sc, 125 Hz; Y, 124 Hz; Lu 121 Hz}$). The chemical shifts and coupling constants of the latter compounds’ three bridging Ln-HSi groups are temperature independent to 200 K. In contrast to LiN(SiHMe)$_2$Bu$_3$, 3 – 5 are fluxional; moreover, the low temperature NMR spectra suggest a low symmetry structure with three unique N(SiHMe)$_2$Dipp ligands. For example, the 1H NMR spectrum of 4 at 205 K in toluene-d$_8$ (Figure 1) contained δ_{SiH} at 5.41 ppm ($\nu_{\text{SiH}} = 132$ Hz), 5.26 ppm ($\nu_{\text{SiH}} = 141$ Hz) and 4.89 ppm ($\nu_{\text{SiH}} = 116$ Hz). In addition, the Dipp signals in the 1H NMR spectra indicated that their rotation slowed at low temperature. The 1H NMR spectrum of 4 at 205 K in toluene-d$_8$ contained six well-resolved resonances from 4.17 ppm to 2.34 ppm (1 H each) and twelve, partly overlapping resonances (1.63 ppm – 0.65 ppm) assigned to the methine and methyl moieties in the three distinct Dipp groups.

A 2D 1H-8Y HSQC spectrum (Figure 2A), acquired at 205 K in toluene-d$_8$, showed correlations between the three SiH signals and the 8Y NMR signal at 378.5 ppm. The cross-peaks reveal inequivalent through-bond interactions between yttrium and the three bridging SiH moieties. The intensity of the cross-peaks is directly proportional to the strength of the 1H-8Y J-coupling, thus the most upfield 1H NMR signal with the lowest J_{SiH} value most strongly couples with the yttrium center. Note that although the 1H T_2 also affects HSQC peak intensity, the three SiH groups have similar T_2 values.

The 29Si NMR signal for 4 at room temperature appeared at –28.2 ppm, and this signal split at 205 K into three that ranged from only –29.4 to –30.2 ppm. In addition, the most upfield 1H NMR signal at 4.89 ppm correlated to the middle 29Si NMR signal at –29.6 ppm. These data suggest that the differences in Ln-HSi between the three N(SiHMe)$_2$Dipp ligands have minimal effect on the silicon centers.

Three bands in the IR spectra of 3, 4 and 5 in the ν_{SiH} region (KBr pellet; Table 1) indicate that the three N(SiHMe)$_2$Dipp ligands are also inequivalent in the solid state. This result is consistent with the solution phase structures measured by NMR spectroscopy at low temperature. Interestingly, the lowest frequency band in each compound is sharpest.

Recrystallizations of 3 – 5 from pentane provide X-ray quality crystals.6 Interesting crystallographic features of these similarly structured molecules include trigonal planar LnN$_3$ cores, low symmetry, and short Ln–H interatomic distances. First, the trigonal planar LnN$_3$ coordination geometry (see Figure 3 and ESI) contrast the pyramidal geometries of Ln(N(SiHMe)$_2$I)$_3$ and Ln(N(SiHMe)$_2$I)Bu$_3$.14, 15 We have recently described solid state structures of alkyl compounds containing SiHMe$_2$ moieties and aryl groups, and these also give planar LnC$_6$ geometries.19 Second, the three ligands are not related by crystallographic- or pseudo-symmetry elements in Ln(N(SiHMe)$_2$I)Dipp$_3$. Two of the Dipp groups are located on one side of the LnN$_3$ plane, whereas the third Dipp is on the other side of the LnN$_3$ plane. In contrast, La[N(SiMe)$_2$I]Dipp$_3$.12
Ln[SiHMe₃]Dipp, and Ln[N(SiMe₂Bu)SiMe₃] form pseudo-C₃ symmetric molecules. The inequivalence of the N(SiHMe₃)Dipp ligands extends to their interactions with the metal center. In 3 for example, the Sc1–N3 distance (2.124(2) Å) is significantly longer than Sc1–N1 and Sc1–N2 (2.089(2) and 2.098(2) Å). The non-classical Sc−HSi interactions, as characterized by the Sc−H interatomic distances (H atoms bonded to Si are located objectively and refined) and Sc–N−Si (94 – 105°), and Sc–N–Si−H torsion angles (2.6 – 9.8°) are all consistent with Sc−HSi interactions and also are all inequivalent. In particular, the Sc1–H3s distance of 2.05(2) Å is considerably shorter than the Sc1–H1s and Sc1–H2s distances (2.47(2) and 2.56(2) Å, respectively).

Remarkably, the H40 bonded to the methine of one isopropyl group, also approaches the scandium center with a very short distance (Sc1–H40, 2.34(3) Å) and suggests an agostic Sc−HC interaction. At this point, we re-examined the ¹H,²⁰Y HSQC spectrum to look for additional correlations; however, at 205 K, no cross-peaks were observed. Instead, the ¹H,²⁰Y HSQC NMR spectrum acquired at 190 K in pentane showed weak correlations between ²⁰Y and the methine and methyl signals at 2.24 and 1.59 ppm, respectively (Figure 2B).

The reaction of 4 and one equiv. of acetonophenone in benzene-d₆ instantaneously provides the product Y[N(SiMe₂OCHMePh)Dipp][N(SiHMe)Dipp] (6) resulting from hydrosilylation of the ketone by one of the SiH groups (eqn (4)).

The ¹H NMR spectrum of 6 at room temperature showed one peak at 5.33 ppm (2H, 1J_HH = 136 Hz). A new quartet and doublet at 5.0 and 1.42 ppm, which were assigned to the CHMe groups, were assigned to the CHMe that resulted from acetophenone insertion into one of the SiH in 4. These signals also correlated in ¹H–¹³C HMQC and HMBC experiments with a ¹³C NMR signal at 77.5 ppm assigned to the carbon bonded to oxygen. A ¹H NMR spectrum of 6 acquired at 205 K contained two resonances at 5.55 ppm (1J_HH = 133 Hz) and 5.11 ppm (1J_HH = 124 Hz) assigned to the SiH in inequivalent N(SiHMe)Dipp ligands. These coupling constant values indicate that two non-classical interactions Y−HSi are present in compound 6. The IR data also showed two νSiH bands at 1997 cm⁻¹ and 1891 cm⁻¹. An X-ray single crystal diffraction study on 6 confirms that acetonophene has inserted into one of the SiH groups (Figure 4). The structural features of 6 also include a planar YNc core and short Ln–H distances (2.43(3) and 2.48(3) Å) indicative of two Y−HSi interactions.

In contrast, mixtures of the silazane HN(SiHMe)Dipp and acetonophene contain only starting materials after 1.5 d at room temperature in benzene-d₆. In addition, the lithium silazido, which reacts with acetonophene in benzene-d₆ to provide HN(SiHMe)Dipp and the lithium enolate. Related reactions of [Cp₂ZrN(SiMe₂)H]⁺ formaldehyde or acetone afford double addition products [Cp₂ZrN(SiMe₂OR)₂]⁺ (R = Me, iC₃H₇). Lanthanide-catalyzed hydrosilylation of carbonyl compounds are uncommon, although we recently reported a cerium-catalyzed hydrosilylation of acrylates that provides α-silyl esters. In the present case, attempts to add more than one equivalent of acetonophene to 4 provided multiple, unidentified products.
Thus, one of three Y–HSi secondary interactions in 4 reacts inequivalently than the other two. Here, we note that the Y–HSi moiety with the lowest $\delta$$_{SiH}$ and smallest $\jmath$$_{HSi}$ also shows the greatest 1H,139Y HSQC bond interactions. The latter measurement probes through-bond interactions (J) and it is tempting to assign this group as the most activated and reactive toward hydrosilylation; however, the covalent contribution may be a small component to the overall bonding in Ln–HSi interactions. In this context, we are currently studying the reactions of 3 – 5 with other electrophiles, including more hindered ketones, to identify which SiH group reacts.

This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. AV and AIR acknowledge the donors of ACS-PRF (58627-DNI6) for support for Y NMR experiments.

Conflicts of interest

There are no conflicts to declare.

Notes and references

Figure 4. Thermal ellipsoid plot of Y[N(SiMe$_2$OCHMePh)Dipp][N(SiHMe$_2$)Dipp] (6). H atoms bonded to Si were located in the Fourier difference map, refined, and are included in the illustration. H31, which was placed in a calculated position, is included in the image. All other H atoms, crystallographically independent 6, and pentane are not shown for clarity.

COMMUNICATION