Flow Cytometric Analysis and Sorting of Heterodera glycines Eggs

G. L. Tylka
Iowa State University, gltylka@iastate.edu

T. L. Niblack
University of Missouri

T. C. Walk
University of Missouri

K. R. Harkins
Iowa State University

L. Barnett
University of Missouri

Follow this and additional works at: http://lib.dr.iastate.edu/plantpath_pubs

Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/plantpath_pubs/192. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Authors

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/plantpath_pubs/192
Flow Cytometric Analysis and Sorting of Heterodera glycines Eggs

G. L. TYLKA, T. L. NIBLACK, T. C. WALK, K. R. HARKINS, L. BARNETT, AND N. K. BAKER

Abstract: A nondestructive technique was developed to characterize and separate eggs of soybean cyst nematode, Heterodera glycines, by developmental stage using flow cytometry. Eggs from cysts cultured on susceptible soybean roots were suspended in 0.1% xanthan gum or 59% sucrose and loaded into either a Coulter EPICS 752 or EPICS 753 flow cytometer. Eggs were analyzed and sorted according to forward angle and 90° light scatter, flow cytometric parameters that are relative measures of object size and granularity, respectively. Mature eggs containing vermiform juveniles were less granular and slightly larger than eggs in earlier stages of embryogeny, allowing for separation of mature eggs from immature eggs. The effectiveness of flow cytometric sorting was evaluated by comparing the developmental stages of subpopulations of unsorted and sorted eggs. Of a subpopulation of unsorted eggs, 62% contained vermiform juveniles, whereas 85 to 95% of sorted subpopulations of larger, less granular eggs contained vermi-form juveniles. Suspending H. glycines eggs in 0.1% xanthan gum or 59% sucrose for flow cytometric analysis had no effect on subsequent egg hatch in vitro. This technique is an efficient and effective means to collect large, relatively homogeneous quantities of H. glycines eggs in early or late embryogeny, and would likely be useful for analyzing and sorting eggs of other nematode species for use in developmental, genetic, or physiological research, or for identification and collection of parasitized eggs.

Key words: egg development, embryogeny, flow cytometry, Heterodera glycines, method, nematode, nematode egg sorting, soybean cyst nematode.

Eggs extracted from adult females and cysts of soybean cyst nematode, Heterodera glycines Ichinohe, are of varying ages and developmental stages because eggs are produced sequentially and embryogeny within populations of eggs is asynchronous. Currently, no efficient technique exists to collect quantities of eggs in a specific embryonic stage. Researchers have relied on tedious microscopic observation and manual selection to obtain homogeneous populations of eggs in specific stages of development (1,4,22). Sucrose density gradient centrifugation was reported to separate eggs of different developmental stages (2), but the resulting subpopulation of eggs was not homogeneous.

Flow cytometry is a rapid and precise technique for simultaneously measuring multiple characteristics of individual biological particles such as cells, organelles, or cell aggregates. Biological particles flow in a laminar manner within a hydrodynamic system through the flow cytometer (13). Hydrodynamic forces orient the long axis of nonspherical particles, such as nematode eggs, parallel with the axis of flow (16). Each particle then intersects a laser beam, and the light energy scattered by the particle is converted into electrical impulses and quantified on photomultiplier detectors and a photodiode (13). The degree of reflection and refraction of the light by the particle determines the pattern of scattered laser light (17) and affects the electrical impulses generated by the scattered light. Thus, differences in qualities such as size or granularity are translated into differences in the electrical impulses, which subsequently can be discriminated, stored, displayed, quantified, and manipulated.

Some flow cytometers also have the capacity to sort or isolate subpopulations of biological particles from within a larger heterogeneous population based on differ-
ences in particle size, granularity, and fluorescence, which result in differences in light scatter. After the biological particles are analyzed, sorting is accomplished by establishment of a small electrostatic charge on droplets of carrier medium containing particles with preselected characteristics. The charged droplets are diverted towards an oppositely charged electrical deflection plate and accumulate in a collection container separate from the noncharged droplets (13).

Other apparatus have been used to enumerate nematodes suspended in liquid carrier media. A nephelometer was developed to estimate numbers of *Caenorhabditis briggsae* based on changes in light transmitted through a suspension of the nematodes (23). Changes in the electrical resistance of an electrolyte solution when nematodes pass through a detector provided the basis for enumerating *Neoaplectana* sp. in the Coulter counter, a predecessor to the flow cytometer (18). Later, a modified Coulter counter was developed to enumerate and determine the relative size of *Caenorhabditis elegans* juveniles and adults in suspension (8). The aforementioned apparatus effectively estimated numbers of nematodes in suspension but were not capable of distinguishing subtle qualitative differences in the nematodes.

Flow cytometry has been used to analyze and sort plant protoplasts (6,19), animal spermatozoa (15), plant and animal chromosomes (3,10), and plant microspores (11). Our objectives were to determine whether flow cytometry could be used to detect differences in the developmental stages of *H. glycines* eggs and to sort or recover subpopulations of eggs at selected stages of development. A preliminary report of this work has been published (21).

Materials and Methods

Populations of *H. glycines* were reared on the susceptible soybean (*Glycine max* (L.) Merr.) cultivars Corsoy 79, Essex, or Williams 82 in the greenhouse. Eggs were extracted from adult *H. glycines* females and cysts (5) collected from ca. 30-day-old soybean roots. The extracted eggs were subsequently separated from debris by sucrose centrifugation (14).

Effects of xanthan gum and sucrose on hatch: To minimize settling and facilitate proper flow of relatively large biological particles through the flow cytometer, the particles must be suspended in a buoyant carrier medium such as 0.1% xanthan gum or 59% sucrose. Consequently, *H. glycines* eggs were suspended in these carrier media for several hours to determine whether incubation in the carrier media affected subsequent egg hatch. Eggs were collected as described, then surface disinfested in 0.5% chlorhexidine diacetate for 15 minutes and rinsed several times in sterile deionized water (2). Subsequently, eggs were incubated for 3 hours at 25 C in 0.1% xanthan gum, 59% sucrose, or deionized water.

Following incubation, eggs were concentrated on a 25-μm-pore sieve, rinsed thoroughly with sterile deionized water, and dispensed onto 38-μm-pore microsieves. Microsieves were constructed of cylinders made from 18-mm-d and 20-mm-d polypropylene test tube caps with the tops removed. A 33-mm-d circle of 38-μm-pore nylon monofilament was suspended between the two cylinders to form the bottom of the microsieve. The microsieves with eggs were placed in 32-mm-wide × 72-mm-long × 14-mm-deep rectangular polystyrene trays, which were filled with 12 ml of a hatch solution of either deionized water or 3.1 mM zinc sulfate. Hatching trays with microsieves and eggs were incubated at 25 C in complete darkness in 20-cm-wide × 27-cm-long × 9.5-cm-deep polystyrene boxes. The microsieves were transferred to new rectangular hatching trays filled with fresh solution every 3 to 4 days, and the number of hatched second-stage juveniles (J2) in the old hatch solution was determined after each transfer.

Treatments comprised combinations of three incubation solutions and two hatch solutions in a complete factorial design arranged in five randomized complete
blocks. After approximately 40 days, the remaining unhatched eggs in the microsieves were enumerated, and daily counts of hatched J2 were converted into daily percentages based on the total number of eggs added to each microsieve. Cumulative percentage of hatch at each day of observation was analyzed by a two-factor analysis of variance and subsequent Fisher's least significant difference test when a main effect of incubation solution was detected (20). The experiment was repeated once.

Development of sorting technique: For all flow cytometry and sorting purposes, eggs were suspended in 0.1% xanthan gum or 59% sucrose and were agitated manually or with a stream of air to prevent settling. Egg suspensions were loaded onto a Coulter EPICS 752 flow cytometer with a 200-μm flow cell tip or an EPICS 753 flow cytometer with a 150-μm flow cell tip and analyzed at a wavelength of 488 nm. Adjustments of the various parameters of the flow cytometers were made until the following optimal settings were determined: laser power = 10 to 20 mW, sheath pressure = 41.4 kPa, stream velocity = 10 m/s, bimorphic crystal frequency = 8 kHz, flow rate = 100 eggs/s. A 10% neutral density filter was used to reduce laser light intensity of forward light scatter to the photodiode, and a 488 nm dichroic filter was utilized for reflecting laser light scattered at 90° to the photomultiplier tube.

Preliminary experiments revealed that *H. glycines* egg size and granularity varied with stage of egg development. More mature *H. glycines* eggs, containing vermiform juveniles, were slightly larger and less granular than eggs in earlier stages of embryogeny. Forward angle and 90° light scatter are directly proportional to particle size and granularity, respectively. Consequently, larger and less granular eggs were expected and found to be distributed in the lower right portion of a flow cytometer scatter diagram of 90° light scatter plotted on the Y axis versus forward angle light scatter plotted on the X axis. Five populations of *H. glycines* eggs were analyzed with the flow cytometer, and a consistent scatter diagram distribution was established. Eggs from selected regions of the scatter diagrams were sorted and observed microscopically to assess the stage of egg development.

Sorting effectiveness: Two types of experiments were conducted to quantify the effectiveness of flow cytometric sorting in selecting and segregating subpopulations of eggs in either early or late stages of development. In one set of two experiments, subpopulations of 4,000 to 25,000 eggs were collected from either the entire (100%) scatter diagram distribution or the lower right 50 or 10% of the distribution of a population of *H. glycines* eggs. Six replicate random samples of 100 eggs were collected from each sorted subpopulation and observed at a magnification of 100× or 200× with an inverted compound microscope. Eggs were assigned to one of six categories according to stage of development. Because the treatments were coded during observation, the evaluator categorizing the stage of egg development did not know from which portion of the scatter diagram distribution the eggs were recovered. Chi-square analysis was used to test the degree of independence between the proportion of eggs in defined stages of development and the region of the distribution from which the eggs were recovered (20). Additionally, percentages of the sorted egg subpopulations in each of the six categories were subjected to analysis of variance, followed by a Fisher's least significant difference test when significant treatment effects were detected (20).

In another set of three experiments, eggs were either not loaded into the cytometer or were loaded into the cytometer and subpopulations collected from 100% of the scatter diagram distribution, the lower right region of the distribution, or the upper left region of the distribution. Three replicate random subsamples of 100 eggs each were drawn from each subpopulation of eggs. Eggs were observed at a magnification of 25× with a dissecting microscope and assigned to one of three
Sorting of H. glycines Eggs: Tylka et al. 599

classes: eggs containing vermiform juveniles, eggs not containing vermiform juveniles, and free vermiform juveniles. The numbers of individuals within each class were analyzed by analysis of variance followed by the Waller-Duncan k-ratio t-test (k = 100) to compare means (20).

RESULTS

Effects of xanthan gum and sucrose on hatch: Results of the two experiments were similar; consequently, data presented are from the first experiment. Incubation of H. glycines eggs in 0.1% xanthan gum or 59% sucrose had no beneficial or negative effects on subsequent egg hatch relative to hatch of eggs incubated in deionized water. Maximum cumulative hatch ranged from 45 to 73%, and most eggs hatched between days 3 and 12, regardless of treatment (Fig. 1). Eggs incubated in deionized water and subsequently incubated in 3.1 mM zinc sulfate had the most overall hatch. Throughout the experiment there was never a statistically significant main effect of incubation solution detected. However, significantly more eggs hatched in zinc sulfate than in deionized water beginning on day 9 and persisting throughout the remainder of the experiment. Mean maximum cumulative percentage hatch of eggs incubated in deionized water and 3.1 mM zinc sulfate was 48 and 69%, respectively.

Development of sorting technique: The scatter diagram distribution of 90° light scatter plotted on the Y axis versus forward angle light scatter plotted on the X axis revealed a consistent inverse relationship (Fig. 2). Eggs collected from the upper left area of the scatter diagram were smaller than the other eggs, were more granular or opaque, and contained nematode embryos in the early stages of embryogeny (Fig. 3A). Conversely, eggs from the lower right region of the scatter diagram were larger and more translucent than the other eggs, and a majority of the eggs contained vermiform juveniles (Fig. 3B). Subpopulations of eggs collected from opposite ends of the scatter diagram distribution were not completely exclusive of eggs in other stages of embryogeny. Flow cytometric analysis and sorting of subpopulations of 4,000 to 20,000 eggs took from 2 to 4 hours to complete.

Sorting effectiveness: The results obtained when the two types of experiments were repeated were similar to the results of the initial experiments; thus, results from the first of each type of experiment are pre-

![Fig. 1. Effects of incubation of Heterodera glycines eggs in deionized water (DW), 59% sucrose (Suc), and 0.1% xanthan gum (Xan) on cumulative percentage hatch of eggs in DW and 3.1 mM zinc sulfate (ZnSO4). Designation before "/' represents egg incubation treatment and designation after "/' indicates the solution in which the eggs were incubated for hatch.](image1)

![Fig. 2. Scatter diagram of 90° light scatter (Y axis) versus forward angle light scatter (X axis) of Heterodera glycines eggs.](image2)
FIG. 3. Subpopulations of Heterodera glycines eggs analyzed and sorted by flow cytometry. A) Eggs collected from upper left region of the scatter diagram distribution. B) Eggs collected from lower right region of the scatter diagram distribution. Scale bar = 100 µm.

Results are presented, unless otherwise stated. In both types of experiments, eggs collected from the lower right region of the scatter diagram distributions contained significantly larger proportions of nematodes in later stages of embryogeny than eggs collected from the upper left region of the scatter diagram distributions. In the experiment where sorted eggs were assigned to one of six categories, 62% of the eggs collected from the entire scatter diagram distribution, 85% of eggs collected from the lower right 50% of the distribution, and 95% of the eggs collected from the lower right 10% of the distribution contained vermic form juveniles (Table 1). There was a consistent relationship between stage of embryogeny and the flow cytometric characteristics of the eggs as indicated by a highly significant ($P < 0.001$) chi-square value.

In experiments where subpopulations of eggs were assigned to one of three categories, few of the eggs run through the cytometer and collected from the upper left region of the scatter diagram distribution contained vermic form juveniles, but nearly 80% of eggs collected from the lower right region of the distribution contained them (Fig. 4). A majority of the eggs in subpopulations not run through the cytometer contained nematode embryos that had not yet developed into vermic form juveniles, and the remaining eggs contained vermic form juveniles. Similar results usually were obtained when subpopulations of eggs were run through the cytometer and collected from the entire scatter diagram distribution. However, in one of three experiments, 10% of the individuals observed from a subpopulation run through the cytometer and collected from the entire scatter diagram distribution were not eggs, but were free vermic form juveniles (Fig. 4).

DISCUSSION

Flow cytometry is an effective and efficient means of collecting large quantities of eggs from the entire scatter diagram distribution, and it was found that the proportion of eggs containing vermic form juveniles increased as the stage of embryogeny progressed. The results of this study suggest that flow cytometry could be used as a tool for the selective sorting of nematode eggs based on their developmental stage.
Sorting of H. glycines Eggs: Tylka et al. 601

Sorted eggs may be adversely affected by physical forces during passage through the flow cytometer, by intersection with the argon laser beam, or by the establishment of an electrostatic charge on the droplets of carrier medium during sorting. In one of our experiments, 10% of the individuals in a subpopulation analyzed by the cytometer and collected from the entire scatter diagram distribution were free vermiform juveniles that were not encased in egg shells, but free vermiform juveniles were not observed in a subpopulation that was not analyzed by the cytometer. The free juveniles may have been prematurely released from eggs due to passage through the flow cytometer. However, there are no published reports of adverse effects of flow cytometric analysis and sorting on the sorted biological particles. Likewise, we have conducted hatch experiments in vitro using sorted subpopulations of eggs collected with the flow cytometer and have not observed any changes in egg viability or hatching activity.

Flow cytometric analysis and sorting of nematode eggs has many potential uses in hematological research. The technique we describe would likely be directly applicable for sorting eggs of Meloidogyne species or other nematodes that produce large quantities of eggs. Sorted subpopulations of nematode eggs would be useful for developmental studies, genetic engineering of nematode embryos, physiological research, and studies on the effects of pesticides or other chemicals.

The maturity of populations of H. glycines eggs obtained from adult females and cysts varied considerably, with 30 to 60% of the eggs containing vermiform juveniles. This variation was noticeable when 90° light scatter of the eggs was plotted on the Y axis against forward angle light scatter on the X axis in a scatter diagram. Such scatter diagrams are representations of the overall maturity of the egg populations and, consequently, may be useful in research on factors affecting embryogeny and diapause in H. glycines or other nematode species.
Parasitized nematode eggs often appear distorted, enlarged, discolored, or unusually opaque (7,12). Such qualitative differences are readily detected and easily quantified using flow cytometry technology. Consequently, the technique we describe may represent an automated and efficient approach to identifying and selecting parasitized nematode eggs, which would expedite the search for new organisms with potential as biological control agents. Alternatively, flow cytometric analysis might be useful in determining the success of introductions of biological control agents by assessing the degree of parasitism in a population of nematode eggs previously inoculated with a known nematode egg parasite.

LITERATURE CITED