The 1998 Iowa Corn Yield Test Report, District 3

K.E. Ziegler
Iowa State University

W.H. Vinson
Iowa State University

D.E. Carroll
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/cornyield

Part of the Agriculture Commons

Recommended Citation

https://lib.dr.iastate.edu/cornyield/195

This Report is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Corn Yield Tests by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The 1998 Iowa Corn Yield Test Report, District 3

Abstract
Results of the Iowa Crop Performance Test-Com are published to aid Iowa farmers in selecting corn hybrids. This is the 79th consecutive year for the test. These data are first released on the Iowa Crop Improvement Association's homepage at http://www.agron.iastate.edu/icia/ usually around the end of November. For additional information about electronic distribution, contact Extension Software Service, 110 EES Bldg., Haber Rd., Iowa State University, Ames, Iowa 50011-3070, telephone number (515) 294-8658.

Disciplines
Agriculture
A supplement to the December 12, 1998 issue of *Iowa Farmer Today*

1998

Iowa Crop Performance Test—Corn

District 3

Results of the *Iowa Crop Performance Test—Corn* are published to aid Iowa farmers in selecting corn hybrids. This is the 79th consecutive year for the test.

These data are first released on the Iowa Crop Improvement Association’s homepage at http://www.agron.iastate.edu/icia usually around the end of November. For additional information on electronic distribution, contact Extension Service, 110 EES Bldg., Haber Rd., Iowa State University, Ames, Iowa 50011-3070, telephone number (515) 294-8658.

The next released format of these data is on computer diskettes, which include a hybrid selection computer program described in another section of this report. These diskettes are usually available a week to 10 days after the data are released on the World Wide Web. The final format is the printed version, which is printed and distributed by *Iowa Farmer Today* in its December 12, 1998 issue. A few days later, the printed reports also are available from county extension offices.

The presentation of data for the hybrids tested does not imply approval or endorsement by the authors or the agencies sponsoring or conducting the test. Entries in Tables 1 and 2 are designated by brand name and variety.

Use of These Data in Advertisements

Iowa State University and the Iowa Crop Improvement Association desire to maintain the credibility of data from the *Iowa Crop Performance Test—Corn*. Misuse of these data in advertisements can have a negative effect on the perception of the value of these data. For advertising purposes, brand-to-brand comparisons should not be made unless more than one competitor brand is used in the ad and all entries of those brands in a given table are included in the ad. Advertisement statements by an individual company about the performance of its entries can be made as long as they are accurate statements about the data as published with no reference to other companies’ hybrids. A statement similar to: “See the official *Iowa Crop Performance Test—Corn* report, Pm-660-(1-7)-98, for details,” should be included in the ad.

1998 Procedure

Producers of seed corn and Iowa State University were eligible to enter hybrids in the *Iowa Crop Performance Test—Corn*. Each producer was allowed a maximum of nine paid entries per district. All commercial entries had to be available in a quantity of at least 10 bushels of seed.

In 1998, data are reported on 216 entries in this district. Ten of the entries determined to be check hybrids were entered by the Iowa Crop Improvement Association. In June, survey cards were mailed to a random sample of corn growers in Iowa. Based on the survey results, the 10 hybrids grown on the most acres in a district are classified as check hybrids for that district. The check hybrids (+ and #) in this report were determined by the 1997 survey. The Iowa Crop Improvement Association entered a maximum of two check hybrids of any given brand. These entries were given priority over the remaining 206 entries made by seed producers.

Each entry was replicated four times in four-row plots at a planting rate of 29,000 kernels per acre at each location. All locations were machine planted. The center two rows of each plot were harvested with a corn combine. No gleanings or dropped ears were included in yield data. A moisture determination was made from each plot and yields were corrected to 15.5 percent moisture for shelled corn.

Since 1988, data for protein, oil, and starch percentages have been included in the *Iowa Crop Performance Test—Corn* reports. Protein, oil, and starch were measured on an Infratec 1225 near-infrared transmittance analyzer calibrated against accepted chemical methods as done by Woodson-Tenant Labs, Des Moines, Iowa. Dr. Charles R. Hurburgh, Jr. of the ISU Department of Agricultural and Biosystems Engineering was responsible for analyzing the samples. Samples for nutrient analysis were collected from one field in each district. Data presented are averages of the four replicated plots in that field. To be consistent with the yield data, the protein, oil, and starch data were corrected to 15.5 percent moisture.

How Information Is Presented

The agronomic data presented are averages of two locations in 1998 and three locations in 1996 and 1997. Yield in bushels per acre and percentages of moisture, root lodging, stalk lodging, dropped ears, stand, protein, oil, and starch are shown for all entries in 1998 and for those tested in 1996 and 1997 that were in the 1998 test.

Interpretation of Results

Yield differences due to variation in soil, fertility, moisture availability, insect infestation, and diseases, plus any variation due to planting and harvesting techniques, are identified through statistical analysis. The LSD values for yield shown in Tables 1 and 2 represent, in bushels per acre, the amount of yield variation that could be due to variations in the factors just mentioned. In comparing varieties, yield differences greater than the LSD value can be attributed to genetic differences in the yield potential of these varieties; yield differences less than the LSD value are not statistically different and could have been due to other factors.

Grain moistures shown in Tables 1 and 2 are indications of maturity and natural drying rate. Maturity of varieties entered generally ranged from short to full season. Yield comparisons should be made among varieties of similar maturity.

It is important to select varieties having stable performance over a range of environmental conditions. High yields for two or more consecutive years indicate stable performance. Supplemental yield and agronomic information about specific varieties may be obtained from seed corn dealers, crop consultants, and from neighbors who have grown these varieties.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Cross</th>
<th>196-98</th>
<th>197-98</th>
<th>198-98</th>
<th>LSD 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer</td>
<td>134</td>
<td>180.4</td>
<td>194.3</td>
<td>191.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Hobart</td>
<td>130</td>
<td>150.8</td>
<td>162.7</td>
<td>163.6</td>
<td>15.2</td>
</tr>
<tr>
<td>University</td>
<td>813</td>
<td>121.7</td>
<td>134.4</td>
<td>135.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Prairie Gold</td>
<td>146</td>
<td>115.9</td>
<td>127.6</td>
<td>128.8</td>
<td>14.0</td>
</tr>
<tr>
<td>FS</td>
<td>141</td>
<td>100.7</td>
<td>114.1</td>
<td>116.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Fonlanelle</td>
<td>126</td>
<td>100.1</td>
<td>114.4</td>
<td>117.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Wilson</td>
<td>135</td>
<td>94.7</td>
<td>108.7</td>
<td>111.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Curry</td>
<td>159</td>
<td>77.5</td>
<td>91.9</td>
<td>96.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>134</td>
<td>77.5</td>
<td>92.3</td>
<td>96.4</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>Cross</td>
<td>196-98</td>
<td>197-98</td>
<td>198-98</td>
<td>LSD 90%</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Pioneer</td>
<td>141</td>
<td>175.9</td>
<td>190.8</td>
<td>199.0</td>
<td>17.3</td>
</tr>
<tr>
<td>Hobart</td>
<td>140</td>
<td>149.9</td>
<td>163.9</td>
<td>166.8</td>
<td>17.0</td>
</tr>
<tr>
<td>University</td>
<td>846</td>
<td>122.4</td>
<td>134.9</td>
<td>138.0</td>
<td>13.2</td>
</tr>
<tr>
<td>Prairie Gold</td>
<td>146</td>
<td>116.7</td>
<td>128.8</td>
<td>130.5</td>
<td>13.8</td>
</tr>
<tr>
<td>FS</td>
<td>141</td>
<td>102.2</td>
<td>116.2</td>
<td>118.3</td>
<td>13.8</td>
</tr>
<tr>
<td>Fonlanelle</td>
<td>126</td>
<td>100.0</td>
<td>114.0</td>
<td>117.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Wilson</td>
<td>135</td>
<td>94.5</td>
<td>109.0</td>
<td>112.0</td>
<td>12.4</td>
</tr>
<tr>
<td>Curry</td>
<td>159</td>
<td>77.5</td>
<td>91.9</td>
<td>96.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>134</td>
<td>77.5</td>
<td>92.3</td>
<td>96.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Yield

<table>
<thead>
<tr>
<th>Variety</th>
<th>Cross</th>
<th>196-98</th>
<th>197-98</th>
<th>198-98</th>
<th>LSD 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer</td>
<td>134</td>
<td>180.4</td>
<td>194.3</td>
<td>191.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Hobart</td>
<td>130</td>
<td>150.8</td>
<td>162.7</td>
<td>163.6</td>
<td>15.2</td>
</tr>
<tr>
<td>University</td>
<td>813</td>
<td>121.7</td>
<td>134.4</td>
<td>135.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Prairie Gold</td>
<td>146</td>
<td>115.9</td>
<td>127.6</td>
<td>128.8</td>
<td>14.0</td>
</tr>
<tr>
<td>FS</td>
<td>141</td>
<td>100.7</td>
<td>114.1</td>
<td>116.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Fonlanelle</td>
<td>126</td>
<td>100.1</td>
<td>114.4</td>
<td>117.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Wilson</td>
<td>135</td>
<td>94.7</td>
<td>108.7</td>
<td>111.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Curry</td>
<td>159</td>
<td>77.5</td>
<td>91.9</td>
<td>96.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>134</td>
<td>77.5</td>
<td>92.3</td>
<td>96.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Seed

<table>
<thead>
<tr>
<th>Variety</th>
<th>Cross</th>
<th>196-98</th>
<th>197-98</th>
<th>198-98</th>
<th>LSD 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer</td>
<td>134</td>
<td>180.4</td>
<td>194.3</td>
<td>191.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Hobart</td>
<td>130</td>
<td>150.8</td>
<td>162.7</td>
<td>163.6</td>
<td>15.2</td>
</tr>
<tr>
<td>University</td>
<td>813</td>
<td>121.7</td>
<td>134.4</td>
<td>135.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Prairie Gold</td>
<td>146</td>
<td>115.9</td>
<td>127.6</td>
<td>128.8</td>
<td>14.0</td>
</tr>
<tr>
<td>FS</td>
<td>141</td>
<td>100.7</td>
<td>114.1</td>
<td>116.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Fonlanelle</td>
<td>126</td>
<td>100.1</td>
<td>114.4</td>
<td>117.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Wilson</td>
<td>135</td>
<td>94.7</td>
<td>108.7</td>
<td>111.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Curry</td>
<td>159</td>
<td>77.5</td>
<td>91.9</td>
<td>96.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>134</td>
<td>77.5</td>
<td>92.3</td>
<td>96.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Protein

<table>
<thead>
<tr>
<th>Variety</th>
<th>Cross</th>
<th>196-98</th>
<th>197-98</th>
<th>198-98</th>
<th>LSD 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer</td>
<td>134</td>
<td>180.4</td>
<td>194.3</td>
<td>191.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Hobart</td>
<td>130</td>
<td>150.8</td>
<td>162.7</td>
<td>163.6</td>
<td>15.2</td>
</tr>
<tr>
<td>University</td>
<td>813</td>
<td>121.7</td>
<td>134.4</td>
<td>135.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Prairie Gold</td>
<td>146</td>
<td>115.9</td>
<td>127.6</td>
<td>128.8</td>
<td>14.0</td>
</tr>
<tr>
<td>FS</td>
<td>141</td>
<td>100.7</td>
<td>114.1</td>
<td>116.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Fonlanelle</td>
<td>126</td>
<td>100.1</td>
<td>114.4</td>
<td>117.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Wilson</td>
<td>135</td>
<td>94.7</td>
<td>108.7</td>
<td>111.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Curry</td>
<td>159</td>
<td>77.5</td>
<td>91.9</td>
<td>96.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>134</td>
<td>77.5</td>
<td>92.3</td>
<td>96.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>
District 3

Designations Identifying Brands in the Test

<table>
<thead>
<tr>
<th>As Seeds</th>
<th>As Seeds, Allen, 52305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigold</td>
<td>Agri Seed Co., St. Francisville, IL 60140</td>
</tr>
<tr>
<td>Agripro</td>
<td>Agri Seeds, Inc., Ames, IA 50011</td>
</tr>
<tr>
<td>Agrovia</td>
<td>Agrovia of Iowa, Inc., Egan, IA 52314</td>
</tr>
<tr>
<td>Airgo</td>
<td>Airgo Seeds, Inc., Ames, IA 50010</td>
</tr>
<tr>
<td>Colony</td>
<td>Colony Hybrid Seeds, Minneapolis, MN 55401</td>
</tr>
<tr>
<td>Cornhusker</td>
<td>Cornhusker Seed Corn Co., Bellevue, IA 52223</td>
</tr>
<tr>
<td>Crysta</td>
<td>Crysta's Hybrid Corn Co., Milford, IL 60535</td>
</tr>
<tr>
<td>Carrey</td>
<td>Carrey Seed Co., Elgin, IL 60120</td>
</tr>
<tr>
<td>Daniels</td>
<td>Daniels Seed Co., Inc., West Bend, WI 53099</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DEKALB Genetics Corp., DeKalb, IL 60115</td>
</tr>
<tr>
<td>Draw</td>
<td>Drawy, Swingle, Ames, IA 50010</td>
</tr>
<tr>
<td>Eyler</td>
<td>Eyler Ross Hybrids, Inc., Shell Rock, IA 50670</td>
</tr>
<tr>
<td>Farnese</td>
<td>Farnese Hybrid, Blackwood, NJ 08012</td>
</tr>
<tr>
<td>FPI</td>
<td>Greenmark, Inc., Bloomington, IL 61704</td>
</tr>
<tr>
<td>Gage</td>
<td>Gage Seed Company, Slater, IA 52334</td>
</tr>
<tr>
<td>Golden Harvest</td>
<td>Golden Seed Co., Comstock, IA 50458</td>
</tr>
<tr>
<td>Golden Harvest</td>
<td>The J. C. Robinson Seed Co., Waterloo, IA 50701</td>
</tr>
<tr>
<td>Great Lakes Hybrids</td>
<td>Great Lakes Hybrids, Inc., Boone, IA 50036</td>
</tr>
<tr>
<td>Hawk-eye Hybrid</td>
<td>Hawk-eye Hybrids, Inc., Plymouth, IA 50336</td>
</tr>
<tr>
<td>Hobison</td>
<td>Hobison's Hybrid, Manchester, IA 52057</td>
</tr>
<tr>
<td>Hill Seed</td>
<td>Hill Seed Co., Ellsworth, IA 51023</td>
</tr>
<tr>
<td>Holter</td>
<td>Holter Bros., Inc., Lake City, IA 52154</td>
</tr>
<tr>
<td>Huber</td>
<td>Huber Seed & Seed Co., Waverly, IA 50677</td>
</tr>
<tr>
<td>Kruger</td>
<td>Kruger Seed Company, Pikesville, IA 50676</td>
</tr>
<tr>
<td>Krichbaum</td>
<td>Krichbaum Seed Co., Dike, IA 50624</td>
</tr>
<tr>
<td>LG Seeds</td>
<td>LG Seeds, M. Pleasant Inc., M. Pleasant, LA 50461</td>
</tr>
<tr>
<td>Metz</td>
<td>Metz Seed Co., Linn, IA 52204</td>
</tr>
<tr>
<td>Metzschman</td>
<td>Metzschman Seeds, West Point, IA 52076</td>
</tr>
<tr>
<td>Midlifeooy</td>
<td>Midlifeooy Seed Co., Inc., Pocahontas, IA 52328</td>
</tr>
<tr>
<td>Midwest Genetics</td>
<td>Midwest Seed Genetics, Carroll, IA 51401</td>
</tr>
<tr>
<td>Morden</td>
<td>Morden Seed Co., St. Paul, MN 55121</td>
</tr>
<tr>
<td>NPL</td>
<td>NPL Hybrids, Lincoln, NE 68504</td>
</tr>
<tr>
<td>NK Brand</td>
<td>NK Brand Seed Co., Minneapolis, MN 55401</td>
</tr>
<tr>
<td>Osilen</td>
<td>Osilen SD Seed, Marshalltown, IA 50158</td>
</tr>
<tr>
<td>Pfister</td>
<td>Pfister Hybrid Corn Co., El Paso, IL 61738</td>
</tr>
<tr>
<td>Powers</td>
<td>Powers Corp., Minneapolis, MN 55402</td>
</tr>
<tr>
<td>Renty</td>
<td>Renty International Ltd., Maryland, MD 20703</td>
</tr>
<tr>
<td>Producers</td>
<td>Producers Hybrid, Parlin, NE 68766</td>
</tr>
<tr>
<td>PF Genetics</td>
<td>PF Genetics, Inc., Ames, IA 50012</td>
</tr>
<tr>
<td>Rathkov</td>
<td>Rathkov, Iowa, Ames, IA 50014</td>
</tr>
<tr>
<td>Rothco</td>
<td>Rothco Seed Co., San Prado, CA 92371</td>
</tr>
<tr>
<td>Sifer</td>
<td>Sifer, Inc., Carroll, IA 51401</td>
</tr>
<tr>
<td>S&L Seed Service</td>
<td>S&L Seed Service, Inc., Marion, IA 52305</td>
</tr>
<tr>
<td>Sydelco</td>
<td>Sydelco Seeds, Ames, IA 50014</td>
</tr>
<tr>
<td>Tera</td>
<td>Tera Industries, Sioux City, IA 51102</td>
</tr>
<tr>
<td>Todes</td>
<td>Todes Seed Co., Lovington, NM 88260</td>
</tr>
<tr>
<td>Uttoof</td>
<td>Uttoof Hybrids, Colmar, PA 19021</td>
</tr>
<tr>
<td>Wibor</td>
<td>Wibor Seeds, Inc., Harlan, IA 51537</td>
</tr>
</tbody>
</table>

Companies with one or more check hybrids entered by the Iowa Crop Improvement Association.

The 1998 Iowa Crop Performance Test—Corn

Computer Diskette Order Form

Iowa Crop Performance Test—Corn results are published each year to help farmers select corn hybrids. Since 1987 a computer version has been available that includes the information in the written reports and a program to calculate an economic return value for each hybrid based on farmer supplied expected corn price, final moisture, and drying and shrink costs. These inputs can easily be changed and the computer will calculate new economic return values for all hybrids. These values provide information on whether full season hybrids produce enough extra yield to compensate for drying costs. The computer program also can sort the hybrids by yield, moisture, adjusted economic value, root lodging, stalk lodging, dropped ears, protein, oil, starch or brand.

For more information, call Exponent Software at 515-296-6078.

If you want to order the programs, please complete, cut out, and return the order form in this report.
The protein, oil, and starch percentage data (Tables 1 and 2) are quality traits important to different end-users of corn. For feed, protein is of primary interest; for wet-mill processing (ethanol and sweeteners), oil and starch content are important. Several firms have begun testing these characteristics on a routine basis. There are now over 50 Iowa grain elevators with this testing capability.

Whole-grain near-infrared equipment measures composition of unground corn kernels in 1 to 1.5 minutes per sample. The equipment measures moisture simultaneously with composition. Using these instruments, country elevators can test and segregate grain as it is received. Obviously, all compositional factors cannot be high in the same hybrid. The grain market is expanding the production and marketing of certain hybrids for specific uses. This is an important change from the generic commodity approach widely used now.

The economic impact of compositional factors can be significant. Corn protein trades off with other protein sources in many feed rations. At $200 per ton for 44 percent protein soybean meal, the value of a 1 percent increase (e.g., from 8 percent to 9 percent) in corn protein is about 12 cents per bushel of corn. Likewise, an additional percent of oil yields about 10 to 14 cents per bushel in increased oil output in a wet processing plant or when substituted for white grease in feed rations. The additional ethanol or sweetener from an extra percent of starch provides 8 to 10 cents per bushel more revenue. Producers feeding livestock are in the best position to capture immediate benefits from these composition data. Country elevators with feed mills also have the ability to capitalize on increased protein in corn. The Iowa Corn Growers Association has prepared a publication to aid growers in using the nutrient data in the Iowa Crop Performance Test—Corn reports: "Nutrient Content and Feeding Value of Iowa Corn," Iowa Corn Growers Association, Des Moines, Iowa 50265.

Hybrids with similar yields and agronomic characteristics may not be identical in corn composition. Therefore, feed costs can be reduced by selecting higher protein hybrids from within a group with similar yield potential. Weather and soil conditions affect composition, but the relative ranking of hybrids does not change greatly. A higher protein hybrid will be higher than average regardless of environmental conditions that raise or lower the averages. The protein percentages reported are measures of crude protein and may not give an accurate indication of feed value if feed rations are balanced on individual amino acids rather than crude protein content. Specialty high oil corns are evaluated in a separate test. These data are published in the Iowa Gold Catalog which is distributed by the Extension Distribution Center (515) 294-5247.

Greensnap
Greensnap happens when severe windstorms occur while corn plants are growing rapidly, usually before pollination. Corn stalks snap off at about a foot or two above the ground. This year, many areas of the state experienced some greensnap. Greensnap was so severe at the Pocahontas County and Mills County locations that these locations were not harvested. At other locations that experienced some greensnap, yields reported this year reflect the reduction in yields caused by greensnap. Also, the actual plants that greensnapped were counted as broken stalks and included in the stalk lodging percent columns in the reports.

Order Form: Iowa Crop Performance Test—Corn Hybrid Selection Program
Please send me computer diskettes of the following districts of the Iowa Crop Performance Test—Corn reports.

Year:
District 1 District 2 District 3 District 4
District 5 District 6 District 7 Set of 7 districts

Each diskette at $25/copy
Complete set at $150/set

Total amount

IBM-compatible; disk size 3.5" only

Make of computer__________________________

Do you have access to EXNET and/or the Internet? yes no

Name__________________________

Address__________________________

Phone__________________________

Mail and make check payable to:
Iowa State University
Dwight Road
Ames, Iowa 50011-3070

1-800-222-8950

1998 Field Data
The District 3 test was planted on farms operated by Mick Reigelsberger near Rolfe in Pocahontas County, Richard Bertram near Holland in Grundy County, and Dave Broghammer near Manchester in Delaware County. Greensnap was severe at the Pocahontas County location so the location was not harvested. Field data for the other two locations are presented in Table A.

At planting time, soil moisture for the district ranged from normal to well above normal west to east across the district. April rainfall was variable for the district with the Grundy County location receiving near normal rainfall and the Delaware County location receiving well above normal rainfall. Rainfall for the district was near normal in May, way above normal in June, well below normal in July, well above normal in August, and below normal in September. Temperatures for the district were well above normal in April and August, way above normal in May and September, below normal in June, and near normal in July. The average district yield was 31 bushels per acre above the mean of the five preceding year's averages. Average location yields are listed in Table A.

Table A. Field Data

<table>
<thead>
<tr>
<th>Fertilizer applied, lb.</th>
<th>Tama silty clay loam</th>
<th>Broghammer Farm Kenyon loam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N P<sub>6</sub></td>
<td>K<sub>6</sub></td>
</tr>
<tr>
<td></td>
<td>N P<sub>6</sub></td>
<td>K<sub>6</sub></td>
</tr>
<tr>
<td>Plowdown</td>
<td>36 92 100</td>
<td>140</td>
</tr>
<tr>
<td>Preplant</td>
<td>140 92 100</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>176 92 100</td>
<td>140 60 100</td>
</tr>
<tr>
<td>1997 crop</td>
<td>Soybeans</td>
<td>Soybeans</td>
</tr>
<tr>
<td>Row width</td>
<td>30 inches</td>
<td>30 inches</td>
</tr>
<tr>
<td>Planting date</td>
<td>April 20</td>
<td>May 11</td>
</tr>
<tr>
<td>Harvest date</td>
<td>Oct. 22 & 23</td>
<td>Oct. 13-15</td>
</tr>
<tr>
<td>Average yield</td>
<td>169 bu/a</td>
<td>162 bu/a</td>
</tr>
</tbody>
</table>

*Field sampled for protein, oil, and starch percentage data.

Other Reports
Separate reports for variety performance are available for each district shown in Figure 1. A limited supply of these publications is available at your county extension office or from Extension Distribution Center, 119 Printing and Publications Building, Iowa State University, Ames, Iowa 50011. Also, an IBM compatible diskette containing these data along with a hybrid selection program is available from Extension Software Services, 110 EES Bldg., Haber Road, Iowa State University, Ames, Iowa 50011-3070. Along with all of the information as it appears in the written reports, the computer diskettes include computer programs that allow farmers to insert their own drying and shrink costs, expected price of corn, and final moisture percentage after drying. Using these specific criteria, the program calculates an adjusted economic value for each hybrid in the test. Farmers can then determine which hybrids might best fit their own production practices and provide the most profit. The computer program also can sort the hybrids by yield, moisture, adjusted value, root lodging, stalk lodging, drooped ears, protein, oil, starch, or brand and then print the data as sorted. An IBM personal or compatible computer supporting MS-DOS 2.0 or higher, with at least 512K memory, is required. The cost of this diskette is $25. All seven districts can be purchased for $150. Order forms, Pm-660-OF-98, are available from county extension offices and included in the printed reports.

The 1998 Iowa Crop Performance Test—Corn:
Pm-660-1-98 District 1
Pm-660-2-98 District 2
Pm-660-3-98 District 3
Pm-660-4-98 District 4
Pm-660-5-98 District 5
Pm-660-6-98 District 6
Pm-660-7-98 District 7

Cooperating Organizations
Iowa Crop Improvement Association
Agriculture & Home Economics Experiment Station
Cooperative Extension Service
Iowa Corn Promotion Board
U. S. Department of Agriculture

And justice for all
The Iowa Cooperative Extension Service's programs and policies are consistent with pertinent federal and state laws and regulations on nondiscrimination. Many materials can be made available in alternative formats for ADA clients.