Lungworm infection in a central Iowa beef herd

Joseph S. Smith
Iowa State University, jss303@iastate.edu

Jeff D. Olivarez
Iowa State University, olivarez@iastate.edu

Matthew T. Brewer
Iowa State University, brewermt@iastate.edu

Mitch R. Hiscocks
Iowa State University, mhscx@iastate.edu

Claire B. Andreasen
Iowa State University, candreas@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/vdpam_pubs

Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Infectious Diseases Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/vdpam_pubs/188. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Veterinary Diagnostic and Production Animal Medicine at Iowa State University Digital Repository. It has been accepted for inclusion in Veterinary Diagnostic and Production Animal Medicine Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Lungworm infection in a central Iowa beef herd

Abstract
A beef herd presented four calves, aged 8–9 months, in late September for evaluation of respiratory disease of 2 months duration that was non-responsive to antimicrobial treatment. Calves were housed on a marshy pasture and similar signs occurred in calves during the same months the previous 2 years. The owner reported greater than 50% of calves were affected with a significantly decreased rate of gain. Physical examination revealed tachypnea and cough. Transtracheal wash cytology, viral respiratory PCR panel and bacterial culture were performed. The viral respiratory PCR panel was negative, and bacterial cultures identified commensal bacteria.

Keywords
lungworm, cytology, cattle

Disciplines
Large or Food Animal and Equine Medicine | Veterinary Infectious Diseases

Comments
This is the peer-reviewed version of the following article: Smith, Joseph S., Jeff D. Olivarez, Matthew T. Brewer, Mitch R. Hiscocks, and Claire B. Andreasen. "Lungworm infection in a central Iowa beef herd." Veterinary Record Case Reports 8, no. 1 (2020), which has been published in final form at DOI: 10.1136/vetreccr-2019-001001. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.
Submission template for “Images in ... “

“Images in ...” articles include 1 or 2 striking and clinically important images with a brief description and an educational message. Published “Images in ...” articles are available free online.

Please DO NOT use this template to submit images (figures) for full case reports – you will be prompted to upload images during the submission process for both full cases and “Images in ...”

- All "Images in ...” MUST be submitted online using this Word template http://mc.manuscriptcentral.com/vetreccr
- You will be asked for more detailed information on submission where you can also upload images, multimedia files, etc
- Further details are available in the Instructions for authors
- For studies using client-owned animals the article must demonstrate a high standard (best practice) of veterinary care and have informed client consent
- You, your institution or practice must be a subscriber to Veterinary Record Case Reports in order to submit. Subscribers can submit as many cases as they like, access all the published material, and re-use any published material for personal use and teaching without further permission.
 - For more information on rates and how to purchase your subscription visit https://vetrecordcasereports.bmj.com/pages/subscribe/
 - Contact your librarian, head of department or practice owner to see if your institution already has a subscription

TITLE OF CASE Do not include the words "Case report"

Lungworm infection in a central Iowa beef herd.
Joe S Smith, Jeff D Olivarez, Matt T Brewer, Mitch R Hiscocks, Claire B Andreasen

DESCRIPTION Up to 250 words summarising the importance of the image(s)

A beef herd presented four calves, aged 8-9 months, in late September for evaluation of respiratory disease of two months duration that was non-responsive to antimicrobial treatment. Calves were housed on a marshy pasture and similar signs occurred in calves during the same months the previous two years. The owner reported greater than 50% of calves were affected with a significantly decreased rate of gain. Physical examination revealed tachypnea, and cough. Transtracheal wash cytology, viral respiratory PCR panel, and bacterial culture were performed. The viral respiratory PCR panel was negative, and bacterial cultures identified commensal bacteria.

Direct and cytopsin cytology from a transtracheal wash contained increased cellularity and mucus with erythrocytes. There were ciliated epithelial cells and a mixture of inflammatory cells, including macrophages (51%), neutrophils (32%), lymphocytes (11%), and lesser numbers of eosinophils (6%) and occasional mast cells <1%. Some macrophages contained hemosiderin, indicating prior hemorrhage. The cytopspin preparation revealed a larvated nematode egg, 54 µm wide and 84 µm long (Figure 1, Alternate Figure 1). The larva contained food granules, consistent with the L1 stage of *Dictyocaulus viviparous*. Cytology of the transtracheal wash is displayed in Figure 2.
The referring veterinarian performed fecal sedimentation of 5 calves that were herdmates and identified lungworm appearing eggs on 4/5 samples. Following the test results, the client administered injectable ivermectin and reported a near complete reduction of respiratory signs in all calves three weeks later.

Clinical signs of *D. viviparous* are more commonly reported in late summer and early fall.(1) *D. viviparous* is a unique trichostrongylid nematode that lives in the bronchi and bronchioles of infected animals. Larvae (L1) are shed in feces, moult twice in the environment, and the L3 are ingested during grazing. Larvae penetrate the intestinal wall, migrate to the mesenteric lymph nodes and are carried to the lungs. The L5 mature to adulthood in the lung, reproduce, and females release larvated eggs.

D. viviparous larvae hatch prior to being coughed up, swallowed, and passed in feces. Therefore, the larvated eggs are rarely observed. Diagnosis by coprological exam requires sedimentation methods to concentrate L1 larvae, and this technique is not routinely performed in many practices. In addition, intermittent larval shedding results in false negative fecal examinations.(2) In this case, transtracheal wash achieved diagnosis by revealing an unhatched egg.

REFERENCES

FIGURE/VIDEO CAPTIONS figures should NOT be embedded in this document

Figure 1: Image from cytospin cytology of the transtracheal wash. The oval object is a
larvated nematode egg, 54 µm wide and 84 µm in length, consistent with an L1 stage *Dictyocaulus viviparous* larvae. The internal larvae dimensions are estimated to be 18 µm wide and 200 µm in length.

Figure 2: Transtracheal wash cytology. The cells present were a mix of The cells are mixed with numerous mononuclear cells, ciliated epithelial cells and a mix of inflammatory cells; macrophages, neutrophils, lymphocytes, and lesser numbers of eosinophils and occasional mast cells were present. An eosinophil is present in the middle of the image.

IMAGE QUIZ Optional (but highly encouraged) – please provide 1 or 2 sentences to describe one of the images in your article. The “Image quiz” will be published in association with your article if accepted – for a sample format visit http://casereports.bmj.com/site/image-quiz. Don’t forget to indicate which image the quiz relates to

MULTIPLE CHOICE QUESTION provide one multiple choice question based on the description above (may be “what’s the likely diagnosis?”)

Which of the following is generally effective for the treatment of lungworm infection in cattle?

POSSIBLE ANSWERS TO MULTIPLE CHOICE QUESTION Max 6

A. Ivermectin
B. Fenbendazole
C. Eprinomectin
D. Albendazole
E. Moxidectin
F. All of the above

CORRECT ANSWER With a brief explanation (the answer will also be linked to the published case)

F is the correct choice. Macrocyclic lactones as well as benzimidazole anthelmintics are generally considered effective for the treatment of lungworm infections in cattle. The infection in this case appears to be due to the end of the duration of action of the long-acting eprinomectin administered to the calves in the spring coinciding with the fall components of the *D. viviparous* life cycle.
Copyright Statement

I, Joseph Samuel Smith DVM, MPS, PhD, DACVIM, DACVCP, The Corresponding Author, has the right to assign on behalf of all authors and does assign on behalf of all authors, a full assignment of all intellectual property rights for all content within the submitted case report (other than as agreed with the BMJ Publishing Group Ltd and the British Veterinary Association) (“BMJ” and “BVA”)) in any media known now or created in the future, and permits this case report (if accepted) to be published on Veterinary Record Case Reports and to be fully exploited within the remit of the assignment as set out in the assignment which has been read https://vetrecordcasereports.bmj.com/pages/wp-content/uploads/sites/51/2016/12/vetreccr copyright.pdf

Date: 10/26/2019

Please save your template with the following format:

Corresponding author’s last name and date of submission, eg,

Smith_October_2019.doc