2017

Advanced Nutrition and Regulation of Metabolism

Kevin L. Schalinske

Iowa State University, kschalim@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/fshn_ag_pubs

Part of the Food Science Commons, and the Human and Clinical Nutrition Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/fshn_ag_pubs/195. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Food Science and Human Nutrition at Iowa State University Digital Repository. It has been accepted for inclusion in Food Science and Human Nutrition Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.
Advanced Nutrition and Regulation of Metabolism

Abstract
INTRODUCTION The body, and metabolism in particular, is a very dynamic process that has to respond appropriately to an ever-changing environment, including the supply of nutrients. The vast majority of cells in the body are quite similar with respect to structure; however, not all cells respond the same to nutrients and hormones or produce the same proteins to carry out specific metabolic processes and other protein-driven functions. But before we can discuss nutrition, the first goal is to have a basic understanding of cell biology, as well as some additional biological concepts.

Activity Proteins are dynamic and regulated molecules that perform a diverse array of functions. Develop a “real-life” analogy to describe how proteins function and how they are regulated. For example, a transport protein like transferrin, which transports iron in the circulation to cells in the body, is similar to a car using roads to transport people from one place to another. Enzyme kinetics can be difficult to understand—we will have an in-class activity where you, the student, will function as an enzyme as a method to illustrate the concept of maximal velocity, affinity, and how maximal velocity can be altered.

Reflection/Discussion Questions Discuss in small groups what happens when a protein is dysfunctional? What could make a protein dysfunctional? Relate this back to the analogy you developed initially. For the car example, if the car cannot accommodate the people, then they cannot get where they need to go; if transferrin cannot bind iron, other cells in the body can become deficient in iron.

Disciplines
Food Science | Human and Clinical Nutrition

Comments
CHAPTER 5
PROTEINS 83
Introduction ... 84
Proteins ... 84
Conclusion .. 104

CHAPTER 6
INTEGRATED METABOLISM AND ENERGY USAGE DURING EXERCISE 107
Introduction .. 108
Integrated Metabolism and Energy Usage during Exercise 108
Conclusion .. 116

CHAPTER 7
WATER-SOLUBLE VITAMINS 119
Introduction ... 120
Water-Soluble Vitamins ... 120
Water-Soluble Vitamins Involved in Cell Division and Methyl Group Metabolism: Folate, B_{12}, and Choline 138
Conclusion .. 154

CHAPTER 8
FAT-SOLUBLE VITAMINS 157
Introduction .. 158
Fat-Soluble Vitamins .. 158
Conclusion .. 180

CHAPTER 9
MINERALS 183
Introduction .. 184
Minerals ... 184
Conclusion .. 203