Categorical equivalence and central relations

Clifford Bergman
Iowa State University, cbergman@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs
Part of the Mathematics Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/math_pubs/193. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Categorical equivalence and central relations

Abstract
A finite algebra is called preprimal if its clone of term operations is a coatom in the lattice of clones. These algebras are of interest both as a generalization of primal algebras, and as a toehold in the difficult analysis of the lattice of clones on a finite set.

Disciplines
Mathematics

Comments
This is a pre-print, available at: https://orion.math.iastate.edu/cbergman/manuscripts/central.pdf.
A finite algebra is called *preprimal* if its clone of term operations is a coatom in the lattice of clones. These algebras are of interest both as a generalization of primal algebras, and as a toehold in the difficult analysis of the lattice of clones on a finite set.

Two algebras A and B are called *categorically equivalent* if the varieties $V(A)$ and $V(B)$ are equivalent as categories via a functor mapping A to B. We write $A \equiv_c B$ to indicate this relationship. It was shown in [5] that if A is primal, then $A \equiv_c B$ if and only if B is primal. This was extended to preprimal algebras in [3] and [4]. Unfortunately, the treatment of one case—that of central relations—is incorrect in the second paper and is difficult to follow in the first. The purpose of this note is to provide a clear and straightforward argument for this one case.

Let e be an equivalence relation on \{1, 2, ..., h\}, for some positive integer h, and let A be a set. We let

$$\delta_e = \{(x_1, x_2, \ldots, x_h) \in A^h : (i, j) \in e \Rightarrow x_i = x_j \}.$$

Relations of the form δ_e are called *generalized diagonals*, and are invariant under every operation on A. We will call e nontrivial if $\delta_e \neq A^h$.

Definition. Let A be a finite set, h a positive integer, and $\rho \subseteq A^h$. Then ρ is an *h-ary central relation* on A if

- for every nontrivial e, $\delta_e \subseteq \rho$;
- for every permutation σ of $\{1, 2, \ldots, h\}$, $(x_1, x_2, \ldots, x_h) \in \rho \implies (x_{\sigma 1}, x_{\sigma 2}, \ldots, x_{\sigma h}) \in \rho$;
- there is a nonempty subset $Z(\rho)$ of A such that $Z(\rho) \times A^{h-1} \subseteq \rho$.

The set $Z(\rho)$ is called the *center* of ρ.

Let Θ be a set of relations on a set A. By $\mathcal{P}(\Theta)$ we mean the clone of all operations preserving every member of Θ. Let us call a finite algebra A of *h-ary central type* if the clone of term operations on A is equal to $\mathcal{P}(\rho)$ for some h-ary central relation ρ on A. Unary central type is a special case of subalgebra-primality, which is considered in [2]. For the remainder of this paper we restrict to the case that $h > 1$.

Let h be an integer greater than 1, and $B_h = \{0, 1, 2, \ldots, h\}$. We define

$$\nu_h = \{(x_1, x_2, \ldots, x_h) \in B_h^h : \{x_1, \ldots, x_h\} \neq \{1, 2, \ldots, h\}\}.$$
(Equivalently, \(\nu_h \) is the set of those \(h \)-tuples containing at least one component equal to 0, or at least one pair of equal components.) Note that \(\nu_h \) is the unique central relation on \(B_h \) such that \(Z(\nu_h) = \{0\} \). Finally, let \(B_h = \langle B_h, \mathcal{P}(\nu_h) \rangle \).

Theorem. Let \(h \) be an integer greater than 1 and let \(A \) be of \(h \)-ary central type. Then \(A \cong B_h \).

Proof. Let \(\rho \) be the \(h \)-ary central relation on \(A \) guaranteed by the hypothesis. By McKenzie’s theorem [6, Corollary 6.1], it suffices to find an invertible idempotent term \(s \) on \(A \) such that \(A(s) \) is weakly isomorphic to \(B_h^n \). By Theorem 2.1 (and the remarks following the proof) of [2] and Lemma 2.4 of [4], this is equivalent to finding an operation \(s \in \mathcal{P}(\rho) \) such that

1. For all \(x \in A \), \(s(s(x)) = s(x) \);
2. \(\mathcal{P}(\rho) \) contains an \((h+1)\)-ary near unanimity term;
3. For every pair \(\theta, \psi \) of distinct subalgebras of \(A^h \), \(s(\theta) \neq s(\psi) \);
4. The relational structures \(\langle s(A), s(\rho) \rangle \) and \(\langle B_h, \nu_h \rangle \) are isomorphic.

In 3 and 4, by \(s(\theta) \) we mean \(\{ (s(x_1), \ldots, s(x_h)) : (x_1, x_2, \ldots, x_h) \in \theta \} \).

Since \(\rho \neq A^h \), there is \(a = (a_1, a_2, \ldots, a_h) \in A^h - \rho \). From the definition of central relation, for every \(1 \leq i < j \leq n \) we have \(a_i \neq a_j \) and \(a_i \notin Z(\rho) \).

Since the center is nonempty, we fix an element \(a_0 \) of \(Z(\rho) \).

Define the unary operation \(s \) on \(A \) by

\[
s(x) = \begin{cases}
 x & \text{if } x \in \{a_0, a_1, \ldots, a_h\} \\
 a_0 & \text{otherwise.}
\end{cases}
\]

Our first task is to prove that \(s \) preserves \(\rho \). So let \(x = (x_1, \ldots, x_h) \in \rho \) and \(y = (y_1, \ldots, y_h) = s(x) \). If some pair of components of \(x \) are equal, then the corresponding pair of components of \(y \) are equal, thus \(y \in \rho \). So suppose that the components of \(x \) are pairwise distinct. Since no permutation of \(a \) is in \(\rho \), there must be an \(i \leq h \) such that \(y_i = s(x_i) = a_0 \), so \(y \in \rho \). We conclude that \(s \in \mathcal{P}(\rho) \).

It is obvious from its definition that \(s \) is idempotent (i.e., condition 1 holds) and \(s(A) = \{a_0, a_1, \ldots, a_h\} \). Furthermore, the mapping \(a_i \mapsto i \), for \(i = 0, 1, 2, \ldots, h \) satisfies condition 4. It is well-known that every central relation admits a near-unanimity term. In fact, we can obtain such a term by defining \(m(x_0, x_1, \ldots, x_h) \) to be \(a_0 \) whenever the “near-unanimity” conditions do not apply.

We now consider condition 3. For \(x \in A^h \), let \(e(x) = \{(i, j) : x_i = x_j \} \). We require the following Lemma.

Lemma. Let \(x \in A^h \), and let \(\theta \) be the subalgebra of \(A^h \) generated by \(x \). If \(e(x) \) is nontrivial, then \(\theta = \delta_{e(x)} \). If \(e(x) \) is trivial, then \(\theta = \rho \) if \(x \in \rho \), else, \(\theta = A^h \).

Proof of Lemma. Let \(y \) be any element of the subalgebra that, according to the statement of the Lemma, is supposed to be equal to \(\theta \). Define a unary
operation \(f \) by \(f(x_i) = y_i \), for \(i = 1, 2, \ldots, h \), and \(f(w) = a_0 \) otherwise. Since \(e(y) \supseteq e(x) \), \(f \) is well-defined. It suffices to prove that \(f \in \mathcal{P}(\rho) \).

So let \(z \in \rho \). If \(z \) has a pair equal components, then so does \(f(z) \), so \(f(z) \in \rho \). Thus we can assume that the components of \(z \) are pairwise distinct. If, for some \(i \leq h, z_i \not\in \{x_1, \ldots, x_h\} \), then \(f(z_i) = a_0 \in Z(\rho) \), so again, \(f(z) \in \rho \). The only remaining possibility is that \(z \) is a permutation of \(x \). In that case, \(x \in \rho \), so \(y \in \rho \). Since \(f(z) \) is a permutation of \(y \), we conclude that \(f(z) \in \rho \).

Now we verify condition 3. Let \(\theta, \psi \) be subalgebras, and assume that \(\theta \not\subseteq \psi \). Therefore, there is a join-irreducible subalgebra \(\mu \) such that \(\mu \subseteq \theta \) and \(\mu \not\subseteq \psi \). Since every join-irreducible subalgebra is 1-generated, it follows from the Lemma that either \(\mu \) is a generalized diagonal, or \(\mu = \rho \). For each of the possibilities, we show, via the Lemma, that there is a generator \(x \) of \(\mu \) with \(x \in s(A)^h \). Then \(x \in s(\theta) - s(\psi) \) as desired.

If \(\mu = A^h \), we take \(x = (a_1, a_2, \ldots, a_h) \). If \(\mu = \rho \), take \(x = (a_0, a_2, \ldots, a_h) \). If \(\mu = \delta_e \) with \(e \) nontrivial. Choose any \(x \in \{a_1, \ldots, a_h\}^h \) with \(e(x) = e \).

\[\square \]

Remarks. It follows from the Lemma that if \(A \) is of \(h \)-ary central type, then the only join-irreducible members of \(\text{Sub}(A^h) \) are generalized diagonal relations and, possibly, the central relation \(\rho \). In fact, if \(h = 2 \), then \(\rho \) is indeed join-irreducible. However, it is easy to show that if \(h > 2 \) then there are distinct nontrivial equivalence relations \(e \) and \(e' \), such that \(\delta_e \vee \delta_{e'} = \rho \).

The notion of a \(c \)-minimal algebra was introduced in [1]. A finite \(c \)-minimal algebra, if it exists, is unique in its categorical equivalence class. It follows from the proof of the Theorem that every \(B_h \) is \(c \)-minimal. As a corollary we obtain: If \(h \neq k \) then \(B_h \not\subseteq c B_k \). If \(A \) is \(h \)-ary central and \(A' \) is \(k \)-ary central, then \(A \not\subseteq c A' \). No algebra can be both \(h \)-central and \(k \)-central.

References

IOWA STATE UNIVERSITY, Ames, IOWA 50011, USA
E-mail address: cberman@iastate.edu