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ABSTRACT 

Predicting protein motions is important for bridging the gap between protein structure and 

function. With growing numbers of structures of the same, or closely related proteins becoming 

available, it is now possible to understand more about the intrinsic dynamics of a protein with 

principal component analysis (PCA) of the motions apparent within ensembles of experimental 

structures. In this paper, we compare the motions extracted from experimental ensembles of 50 

different proteins with the modes of motion predicted by several types of coarse-grained elastic 

network models (ENMs) which additionally take into account more details of either the protein 

geometry or the amino acid specificity. We further compare the structural variations in the 

experimental ensembles with the motions sampled in molecular dynamics (MD) simulations for 

a smaller subset of 17 proteins with available trajectories. We find that the correlations between 

the motions extracted from MD trajectories and experimental structure ensembles are slightly 

different than for the ENMs, possibly reflecting potential sampling biases. We find that there are 

small gains in the predictive power of the ENMs in reproducing motions present in either 

experimental or MD ensembles by accounting for the protein geometry rather than the amino 

acid specificity of the interactions. 

 

  



 3 

INTRODUCTION 

Predicting conformational changes in proteins has long been a topic of interest to many who aim 

to understand protein function and mechanism. Multiple structures of the same protein, or 

closely related proteins,  have been solved by different experimental methods - X-ray 

crystallography1, NMR spectroscopy2 and more recently by cryo-electron microscopy,3 under 

different conditions, in the presence of different ligands, or of mutated protein. These techniques 

reveal information about the intrinsic protein dynamics. The set of essential motions accessible 

to a protein can be readily obtained by applying principal component analysis (PCA)4 to the 

position coordinates of the aligned set of multiple experimental structures.5–10  

Information on protein motions can also be obtained from computational simulations 

such as molecular dynamics (MD) or Monte Carlo (MC). However, these applications require 

significant computer resources, and do not always fully sample the entire conformational space 

accessible to a protein. Coarse-grained elastic network models (ENMs)11–13 on the other hand, 

offer a faster and cheaper alternative to MD or MC simulations for sampling the intrinsic 

motions accessible to a protein. By modeling the protein as a string of beads (usually the Cα 

atoms) connected by harmonic springs (interactions), they are often able to capture the most 

important global motions. ENMs have been used extensively to study the intrinsic dynamics of a 

variety of biomolecules ranging from small globular and membrane proteins14 to nucleic acids,15 

and even large biomolecular assemblies such as the ribosome16–18 and GroEL.19,20 They have 

been shown to accurately predict the crystallographic B-factors of diverse proteins21,22 as well as 

to capture conformational changes between pairs of structures of the same protein.23,24  The 

normal modes from ENMs have also been shown to capture structural variations extracted from 

multiple experimental structures of the same protein25–27 or RNA.28 
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Specifically, here we focus on ENMs that provide the changes in the geometry, the 

Anisotropic Network Models (ANM).29 A subject of some importance has been how to improve 

ENMs by accounting for either more specific details of protein geometry or the chemical nature 

of amino acids.30,31 Hamacher and McCammon have shown that an extended ANM (eANM)32 

with spring constants based on the values of the Miyazawa-Jernigan (MJ) potential amino acid 

interaction energies33 to account for the amino acid specificity of fluctuations performs better in 

reproducing crystallographic B-factors. We have also shown that the ANM can be significantly 

improved by weighting the spring constants between residues by the inverse powers of the 

distance of separation between them,34 a model referred to as the parameter-free ANM (pfANM) 

(pf means that there is no cutoff parameter as in the traditional ANM). Other ways of adjusting  

the springs in ENMs are to use information from the variance-covariance matrix of position 

coordinates35 or the mean square distance fluctuations36 between residues from MD trajectory 

ensembles of the protein. We and others have also shown that using spring constants based on 

the variance of internal distance changes between residues also provides significant gains in the 

ability to reproduce experimentally observed conformational changes.37,38 

In this work, we also introduce a modified version of Hamacher and McCammon’s 

extended ANM (called ccANM) in which the spring constants between residues are based on the 

relative entropies of amino acid pairs rather than the relative energies of the pairs. This is based 

on our recent work, where we extracted a scale of relative entropies between amino acid pairs39 

based on the frequencies of contact changes between amino acid types during conformational 

changes within a dataset of proteins. This entropy measure yields significant gains in identifying 

native structures among decoy sets. Since these entropies measure the tendency for amino acid 

contacts to change, we hypothesize that information on relative entropies of the amino acid pairs 
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might be more useful than their relative energies for differentiating among springs representing 

the interactions.  

First, we systematically test the effectiveness of the classical coarse-grained ANM and 

four different variants of the ANM (that incorporate additional information either regarding 

protein geometry or amino acid specificity) in capturing the motions present in experimental 

structure ensembles of 50 different proteins. In addition, for a smaller subset of 17 proteins 

where MD trajectories are available, we also compare the motions present in the experimental 

ensembles to those in the MD ensembles. Our results suggest that the protein motions as 

extracted from experimental ensembles can differ significantly from those obtained through MD 

simulations. Whether this reflects the difference between the crystal environments and the 

simulation conditions, or a failure of simulations to fully capture the characteristic dynamics 

remains an open question. In addition, we also investigate how well the motions present in either 

the experimental or MD ensembles are captured by a variety of simple coarse-grained elastic 

network models.  

 

METHODS 

Experimental Structure Ensemble Data. A set of experimental structure ensembles for 50 

different proteins (Table S1) were collected in our previous work,40 which we are utilizing here. 

We refer the reader to this previous work for the list of structures in each ensemble set. These 

structures were obtained by a clustering of the Protein Data Bank (PDB)41 at the 95% sequence 

identity level. “Only the monomeric structures are retained. The structures in each cluster were 

aligned using the multiple structure alignment program MUSTANG,42 and the corresponding 
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structure-based sequence alignment was used as a guide to remove any residues and/or structures 

that introduced significant gaps in the middle of the alignment (relatively few such cases). The 

final set of aligned structures from our previous work has been used for the experimental protein 

ensembles. For construction of ANMs, the structure with the lowest average root mean square 

deviation (RMSD) from all other structures is chosen as the representative structure for each 

ensemble (see Table S1 for the list of these representative structures). The distributions of the 

average RMSDs in each ensemble can be found in our previous work.40 

 

Molecular Dynamics Trajectories. For each experimental protein set, we have searched for 

homologous entries in the MoDEL database,43 a repository of publicly available MD trajectories. 

Since the set of proteins in each cluster have a high sequence identity (≥ 95%), we choose a 

protein randomly from each cluster and search for its homologs. We set a threshold on the 

sequence identity of 35% for this selection. For clusters with multiple available homologs, we 

only choose the one with the highest sequence identity. We then download the Cα atom 

trajectories for the selected homologs for each cluster from the MoDEL database. A list of the 

proteins whose trajectories were used is given in Table S2.  

In order to obtain a common reference frame, we transform the coordinates of the MD 

trajectories from their native frame to the frame of their experimental homologs. We do this by 

superimposing the first frame from each MD trajectory onto the representative structure from the 

corresponding experimental ensemble set; and then superimposing all the other frames onto the 

first frame. In order to identify a common subset of residues between the experimental and MD 

datasets, we then align the sequence of each MD homolog to the profile alignment of its 
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respective experimental set (with ClustalOmega)44 and retain only the subset of residues from 

the PDB structure in common with the MD homolog and the experimental ensemble. For 

generating ANMs, the starting PDB structure of each MD dataset is used as the representative of 

the ensemble (see Table S2). 

 

Principal Component Analysis of structural ensembles. Information about protein dynamics 

is extracted from either the experimental ensemble or the MD trajectory ensemble by using PCA 

of the aligned set of structures (to remove rigid body motions). In each case, the dataset for PCA 

is a matrix 𝑋𝑋𝑛𝑛 × 3𝑁𝑁 consisting of the X-, Y- and Z-coordinates of the Cα atoms of each of 𝑁𝑁 

residues in the aligned set of 𝑛𝑛 structures. The variance-covariance matrix 𝑪𝑪3𝑁𝑁 × 3𝑁𝑁  of the 

position coordinates is constructed with its elements obtained as 

𝐶𝐶𝑖𝑖𝑖𝑖 = 〈𝑋𝑋𝑖𝑖𝑖𝑖 − 〈𝑋𝑋𝑖𝑖〉〉 〈𝑋𝑋𝑖𝑖𝑖𝑖 − 〈𝑋𝑋𝑖𝑖〉〉 ;                                                        (1) 

where the brackets refer to averages across all 𝑛𝑛 structures. Eigen-decomposition of the matrix 𝑪𝑪 

results in the eigenvectors, which are a set of orthogonal directions of the variations present in 

the dataset having corresponding eigenvalues denoting the variance along the corresponding 

directions. The principal component (PC) scores are obtained directly from the projections of the 

mean centered data points along these eigenvectors. The PCs are sorted in decreasing order of 

the corresponding eigenvalues and referred to as PC1, PC2, PC3 and so on, with PC1 capturing 

the most significant part of the structural variations.  
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Coarse-grained elastic network models. Next, we describe the various coarse-grained bead-

spring models that we have used in our comparisons. Collectively these are all termed elastic 

network models (ENMs). 

Anisotropic Network Model (ANM). The ANM29 is an elastic-network (bead-spring) model in 

which the Cα atoms of each residue in the protein are represented as beads and all interactions 

between residues are modeled as harmonic springs. Interactions between beads are usually 

restricted to physically close residues within a fixed distance cutoff 𝑅𝑅𝑐𝑐. There are two parameters 

in ANM: the distance cutoff 𝑅𝑅𝑐𝑐 and the spring constant 𝛾𝛾𝑖𝑖𝑖𝑖 between every pair of residues 𝑖𝑖 and 

𝑗𝑗. Throughout this study, the value of 𝑅𝑅𝑐𝑐 has been set to 13 Å. In a classical ANM, all springs are 

assigned uniform values. In other words, for a protein with 𝑁𝑁 residues, 

𝛾𝛾𝑖𝑖𝑖𝑖 = 𝛾𝛾 ∀ 𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}                                                      (2) 

All the springs are assumed to be in equilibrium in the starting structure and the potential energy 

𝑉𝑉 of the system is computed as  

𝑉𝑉 =  1
2
∑ 𝛾𝛾𝑖𝑖𝑖𝑖�𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑖𝑖𝑖𝑖0 �

2
,𝑁𝑁

𝑖𝑖,𝑖𝑖=1                                                   (3) 

where 𝑅𝑅𝑖𝑖𝑖𝑖 refers to the instantaneous displacement between atoms 𝑖𝑖 and 𝑗𝑗 and 𝑅𝑅𝑖𝑖𝑖𝑖0  refers to their 

equilibrium displacement. The Hessian matrix 𝑯𝑯 of the system, with 𝑁𝑁 × 𝑁𝑁 superelements 𝐻𝐻𝑖𝑖𝑖𝑖 is 

calculated as the matrix of second derivatives of the potential with respect to the Cartesian 

coordinate positions of the residues as 
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𝐻𝐻𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑋𝑋𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑌𝑌𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑍𝑍𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑌𝑌𝑖𝑖𝜕𝜕𝑋𝑋𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑌𝑌𝑖𝑖𝜕𝜕𝑌𝑌𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑌𝑌𝑖𝑖𝜕𝜕𝑍𝑍𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑍𝑍𝑖𝑖𝜕𝜕𝑋𝑋𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑍𝑍𝑖𝑖𝜕𝜕𝑌𝑌𝑗𝑗

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑍𝑍𝑖𝑖𝜕𝜕𝑍𝑍𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

                                                    (4) 

The normal modes of motion from ANM are obtained as eigenvectors of the matrix 𝑯𝑯; with the 

corresponding eigenvalues representing the square of frequencies of the modes. The correlations 

in motion between the residues along the X, Y and Z directions can be obtained from the 

corresponding super-elements of 𝑯𝑯−1 and the mean square fluctuations of each residue 𝑖𝑖 from 

the diagonal elements of the corresponding superelement 𝐻𝐻𝑖𝑖𝑖𝑖−1 as follows: 

〈Δ𝑅𝑅𝑖𝑖2〉 = 𝑘𝑘𝐵𝐵𝑇𝑇
𝛾𝛾
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐻𝐻𝑖𝑖𝑖𝑖−1)                                                      (5) 

The theoretical B-factors from the ANM can be conveniently calculated from the mean square 

fluctuations as 

𝐵𝐵𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8𝜋𝜋2〈Δ𝑅𝑅𝑖𝑖2〉/3                                                      (6) 

In addition to the classical ANM, we also explore some different variants of the ANM. 

The basic idea of each of the modified ANMs is the same, with the only change being that the 

spring constants are modified somehow. 

Parameter-free ANM (pfANM). In the pfANM34, one of the parameters, the 𝑅𝑅𝑐𝑐 is eliminated by 

allowing all residues to be connected, but instead of uniform springs the spring constants are 

taken to be proportional to a given inverse power 𝑝𝑝 of the distance 𝑡𝑡𝑖𝑖𝑖𝑖 between them as in Eq. 7. 

Previously we found that 𝑝𝑝 = 6 gave the best representation of the collective motions; whereas 

𝑝𝑝 = 2 best fit the experimental B-factors.34  
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𝛾𝛾𝑖𝑖𝑖𝑖 = 1
𝑟𝑟𝑖𝑖𝑗𝑗
𝑝𝑝  ∀ 𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}                                                      (7) 

Extended ANM (eANM). We use a simplified version of a modified ANM introduced by 

Hamacher and McCammon32 in which the spring constants between a pair of non-adjacent 

contacting residues (as identified by 𝑅𝑅𝑐𝑐) is weighted by the absolute value of the Miyazawa-

Jernigan (MJ) potential33 energy �𝜅𝜅𝑖𝑖𝑖𝑖� between them. The spring stiffness between adjacent 

residues is set to a much larger value, 𝐾𝐾 = 82 RT/Å2 in accordance with the values found for 

peptide bonds. That is, 

𝛾𝛾𝑖𝑖𝑖𝑖 = �
𝐾𝐾      if   |𝑖𝑖 − 𝑗𝑗| = 1

2�𝜅𝜅𝑖𝑖𝑖𝑖�   if   |𝑖𝑖 − 𝑗𝑗| ≠ 1 and 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑅𝑅𝑐𝑐 ∀ 𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}                              (8) 

Contact-change based ANM (ccANM). This is a model similar to the eANM; except that the 

springs between non-adjacent contacting residues falling within the cutoff distance 𝑅𝑅𝑐𝑐 are 

weighted by the inverse of the contact-change based entropies39 𝑠𝑠𝑖𝑖𝑖𝑖 between  the amino acid pair. 

That is, 

𝛾𝛾𝑖𝑖𝑖𝑖 = �
𝐾𝐾      𝑖𝑖𝑖𝑖   |𝑖𝑖 − 𝑗𝑗| = 1

1
𝑠𝑠𝑖𝑖𝑗𝑗

    𝑖𝑖𝑖𝑖   |𝑖𝑖 − 𝑗𝑗| ≠ 1  and 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑅𝑅𝑐𝑐
  ∀  𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}                             (9) 

Distance change based ANM (dcANM). This model captures internal distance-changes as 

observed within an ensemble of structures. For this variant of the ANM, the spring constants 

between each pair of residues is taken as the inverse of the variance of internal distances (𝜎𝜎𝑟𝑟𝑖𝑖𝑗𝑗
2 ) 

between the residue pair over the set of structures (these spring constant values were further 

normalized such that they range between 0 and 1). In other words, 
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𝛾𝛾𝑖𝑖𝑖𝑖 = 1
𝜎𝜎𝑟𝑟𝑖𝑖𝑗𝑗
2    ∀  𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1, … ,𝑁𝑁}                                                    (10) 

 

Performance Evaluation of the ENMs. We measure the performance of each ENM in terms of 

how well it can reproduce the protein structural variations present within an ensemble. The 

directions of motions from the ENM are obtained directly from the ENM modes and the 

structural variations present in an ensemble (experimental/MD) are obtained with PCA. 

Similarity comparisons between a PC and a mode are evaluated by three measures defined by 

Tama and Sanejouand.23 

Overlap (O). This is a measure of how similar the direction of a given mode of motion 𝑀𝑀𝑖𝑖  from 

an ENM is in comparison with the PC eigenvector 𝑃𝑃𝑖𝑖 and is calculated as 

𝑂𝑂𝑖𝑖𝑖𝑖 =
�𝑃𝑃𝑖𝑖∙𝑀𝑀𝑗𝑗�
‖𝑃𝑃𝑖𝑖‖�𝑀𝑀𝑗𝑗�

                                                                (11) 

where �𝑃𝑃𝑖𝑖 .𝑀𝑀𝑖𝑖� refers to the absolute value of the dot product of 𝑃𝑃𝑖𝑖 and 𝑀𝑀𝑖𝑖 and ‖𝑃𝑃𝑖𝑖‖ and �𝑀𝑀𝑖𝑖� 

refer to the length of the PC and mode vectors, respectively. The sign of the dot product is not 

considered since the modes are harmonic in nature. The maximum overlap between any of the 

first 𝑘𝑘 modes of motion with the PC eigenvector 𝑃𝑃𝑖𝑖 is obtained as 

𝑂𝑂𝑖𝑖𝑚𝑚𝑐𝑐𝑚𝑚 = max
𝑖𝑖=1 𝑡𝑡𝑡𝑡 𝑘𝑘

𝑂𝑂𝑖𝑖𝑖𝑖                                                                (12) 

Cumulative Overlap (CO). This is a measure of how well a set of the first 𝑘𝑘 modes from an 

ENM capture the motion sampled by a single PC eigenvector 𝑃𝑃𝑖𝑖 and is calculated as 

𝐶𝐶𝑂𝑂𝑖𝑖𝑘𝑘 = �∑ 𝑂𝑂𝑖𝑖𝑖𝑖2𝑘𝑘
𝑖𝑖=1                                                                  (13) 
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Root Mean Square Inner Product (RMSIP). This quantity measures the similarity in directions 

between the set of first 𝑘𝑘 modes from an ENM and the first 𝑙𝑙 PC eigenvectors from a structural 

ensemble as 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃𝑐𝑐𝑘𝑘 = �1
𝑐𝑐
∑ ∑ �𝑃𝑃𝑖𝑖 ∙ 𝑀𝑀𝑖𝑖�𝑘𝑘

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1                                                (14) 

Based on the above three measures, we use ten different performance metrics to evaluate 

the performance of elastic network models in comparison to PCs from an ensemble as follows: 

the maximum overlap between the first 20 modes from the ENM and each of PC1 (𝑂𝑂1𝑚𝑚𝑐𝑐𝑚𝑚), PC2 

(𝑂𝑂2𝑚𝑚𝑐𝑐𝑚𝑚) and PC3 (𝑂𝑂3𝑚𝑚𝑐𝑐𝑚𝑚); the cumulative overlap between the first 20 modes from the ENM and 

PC1 (𝐶𝐶𝑂𝑂120), PC2 (𝐶𝐶𝑂𝑂220) and PC3 (𝐶𝐶𝑂𝑂320); and the RMSIP between the first 20 ANM modes and 

sets of the first 3 (𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃320), 6 (𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃620), 10 (𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃1020) and 20 PCs (𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃2020).  

In addition, Pearson’s correlation coefficient is reported between the calculated B-factors 

(𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) from the ENM and the crystallographic temperature factors (𝐵𝐵𝑒𝑒𝑚𝑚𝑒𝑒) from the 

representative structure in the experimental ensemble as  

 𝜌𝜌𝑒𝑒𝑚𝑚𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑩𝑩𝑒𝑒𝑒𝑒𝑝𝑝−〈𝑩𝑩𝑒𝑒𝑒𝑒𝑝𝑝〉
‖𝑩𝑩𝑒𝑒𝑒𝑒𝑝𝑝−〈𝑩𝑩𝑒𝑒𝑒𝑒𝑝𝑝〉‖

 𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−〈𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐〉
�𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−〈𝑩𝑩𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐〉�

                                      (15)  

 

 

RESULTS AND DISCUSSION 

Comparison of ENM modes with the motions present within experimental structure 

ensembles. We have previously shown for HIV-1 protease that the modes of motion from the 

classical ANM of a single structure correspond closely to the motions extracted from a set of 



 13 

experimental structures.25 Several other studies have also demonstrated the power of ANMs in 

capturing the structural variations within experimental ensembles for a variety of proteins.26,27 

Here, we compare the motions predicted by the classical ANM and four other variants of ENMs 

with the motions present in experimental structure ensembles for a much larger dataset of 50 

different proteins40 (see Table S1). 

In addition to the classical ANM, we use the four other types of modified ENMs (refer to 

Methods above for more details): (1) pfANM34 with the spring constants between every residue 

pair weighted by the inverse of the sixth power of the distance between them; (2) eANM,32 

where the spring constants are weighted by the absolute values of the MJ potential energies 

between amino acid pair; (3) ccANM, in which the spring constants are weighted by the inverse 

of the contact-change based entropy value for each amino acid pair (based on our previous 

work);39 and (4) dcANM37 with the spring constant between every pair of residues weighted by 

the inverse of the variance of the internal distances between them (over all the structures in the 

experimental ensemble). The performance of each ANM is evaluated for the ten different metrics 

described in Methods. 

We compute the motions for the ENMs of the representative structure from each protein 

ensemble (identified as the structure having the lowest RMSD from all other structures). Table 1 

shows the average values (over the 50 proteins) of the 10 metrics for each type of ENM 

investigated. As expected, the dcANM naturally outperforms all of the other kinds of ANM in 

almost all the metrics. This is because the springs of the dcANM have been chosen directly from 

the internal distance changes between every pair of residues within the dataset for each protein; 

and hence it is naturally able to better reproduce the structural variations present in the dataset 

since it is built directly on the data being compared. The performance assessment of the other 
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ENMs against one another is more relevant to understanding the behavior of the ENMs. Based 

on the number of metrics for which the ENM is best, the ranking of the models is as follows: 

pfANM > ccANM > ANM > eANM. It is clear from Table 1 that the pfANM outperforms the 

other types of ENMs. Also, the ccANM performs essentially at the same level as the ANM on all 

10 metrics. 

Table 1. Performance of different types of ENMs for the dataset of 50 proteins in 
comparison with the motions present in the experimental ensembles.  

Model 𝑶𝑶𝟏𝟏
𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟐𝟐

𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟑𝟑
𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑶𝑶𝟏𝟏

𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟐𝟐
𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟑𝟑

𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟑𝟑𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟔𝟔𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟏𝟏𝟐𝟐𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

ANM 0.41 
± 0.20 

0.42 
± 0.18 

0.44 
± 0.14 

0.67 
± 0.21 

0.70 
± 0.18 

0.71 
± 0.13 

0.70 
± 0.13 

0.67 
± 0.09 

0.63 
± 0.07 

0.56 
± 0.06 

pfANM 0.39 
± 0.19 

0.44 
± 0.17 

0.45 
± 0.13 

0.68 
± 0.21 

0.73 
± 0.17 

0.74 
± 0.12 

0.73 
± 0.12 

0.70 
± 0.09 

0.66 
± 0.07 

0.59 
± 0.06 

eANM 0.39 
± 0.20 

0.42 
± 0.18 

0.44 
± 0.14 

0.66 
± 0.22 

0.70 
± 0.18 

0.72 
± 0.13 

0.70 
± 0.13 

0.66 
± 0.10 

0.63 
± 0.08 

0.56 
± 0.06 

ccANM 0.41 
± 0.20 

0.43 
± 0.18 

0.44 
± 0.13 

0.67 
± 0.22 

0.71 
± 0.17 

0.72 
± 0.12 

0.71 
± 0.13 

0.67 
± 0.10 

0.64 
± 0.07 

0.57 
± 0.06 

dcANM* 0.56 
± 0.19 

0.49 
± 0.15 

0.50 
± 0.13 

0.83 
± 0.14 

0.82 
± 0.12 

0.82 
± 0.10 

0.83 
± 0.08 

0.78 
± 0.07 

0.73 
± 0.06 

0.64 
± 0.06 

Values for each metric (as defined in Methods) are averaged over the 50 proteins. Values for the 
best performing model for each metric are shown in bold. Standard deviations are given as ± 
values 
*dcANM is trained using the variances of the internal distance changes between residues in each 
experimental ensemble, and results are shown in italics. 

 

 
Comparison with protein motions from MD and experimental datasets. Often only one 

structure of a protein or its close homolog is available. In such cases, a conformational sampling 

of the protein is often obtained using various computational techniques such as MD or Monte 

Carlo simulations. Once the simulation is run, the set of resulting structures are aligned to the 

starting structure and the ‘essential motions’5 extracted from the trajectory using PCA as 

described in the Methods section.  
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We performed a sequence-based search on the MODEL database43, an online repository 

of MD simulations for available MD trajectories of the proteins or their homologs present in the 

dataset of 50 proteins. We identify 17 proteins for which MD simulation data were available for 

the protein or a substantial part of it (Table S2). We then compare how well the motions sampled 

by MD simulations for the set of 17 proteins compare against the variations present in sets of 

experimental structures of the same protein. Table 2 shows this comparison of the PCs extracted 

from the experimental dataset vs MD dataset for the 17 proteins.  

Table 2. Comparison of MD and experimental motions for the set of 17 proteins.  

Metric 𝑶𝑶𝟏𝟏
𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟐𝟐

𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟑𝟑
𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑶𝑶𝟏𝟏

𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟐𝟐
𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟑𝟑

𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟑𝟑𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟔𝟔𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟏𝟏𝟐𝟐𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

Value 0.37 
± 0.18 

0.37 
± 0.13 

0.37 
± 0.10 

0.63 
± 0.18 

0.65 
± 0.17 

0.70 
± 0.10 

0.67 
± 0.12 

0.65 
± 0.09 

0.62 
± 0.07 

0.56 
± 0.05 

Values for each metric (as defined in Methods) are averaged over the 17 proteins.  

 

 The average maximum overlap between the first twenty PC directions from the MD 

ensemble with the PC1, PC2 and PC3 of the experimental ensemble is 0.37; which is 

comparatively smaller than the average values obtained for the classical ANM or any of the 

variants of the ANM. This difference is small and thus probably not significant. Several factors 

can affect the set of structures sampled in the MD trajectory; including the force field used, the 

simulation time, etc. It is also possible that the overlap between the conformational space 

sampled by MD and experiments is relatively small. As a result, a dcANM trained on the MD 

dataset could not reproduce well the set of motions in the experimental (MD) ensemble (Table 

S3).  The fact that the ENMs reproduce the experimental ensemble better is noteworthy. 
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In order to further demonstrate that the motions sampled by MD and the experimental 

ensembles are often different, we provide two examples of dynamical cross-correlations 

(DCCMs)45 of the residues from experimental and MD datasets for two different proteins in the 

dataset, lysozyme C (Figure 1A and B) and human leukocyte antigen (HLA) class II 

histocompatibility antigen alpha chain (HLA-DRA) (Figure 1C and D). These were chosen to 

demonstrate outliers in terms of being most similar and most different. In the case of lysozyme 

C, the two DCCMs are similar but with intricate differences, whereas in the case of the HLA-

DRA, there is major differences between the correlations shown.  

A closer inspection of the plots for HLA-DRA reveals that in the MD dataset, there are 

stronger correlations among the residues within each of its two domains (α1 and α2), 

particularly for α2, suggesting that the domains move almost as if they were rigid bodies. On the 

other hand, within the experimental ensemble, the higher correlations mostly correspond to 

residues within the same secondary structure, which can be easily identified from the plots. In 

other words, higher variabilities are observed in the relative orientations of the secondary 

structures within each domain. Previous studies have also shown that the DCCMs of the same 

protein from distinct simulations over different time-scales in MD simulations can be different.46 

Our results further support these observations in addition to suggesting that the dynamical cross 

correlations observed in MD often do not correspond to those observed in a set of experimental 

structures. 

S Since the lengths of the MD simulations differ, one possible reason for the low level of 

agreement between motions from experiments and the simulations is a short simulation time. In 
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order to ascertain whether this is the case, we divide the dataset into two sets: short (< 80ns) and 

long (≥ 80 ns) simulations (see Table S4). We then perform hypothesis testing to see whether the 

average values for each of the ten metrics for the short simulations are worse than those for the 

long simulations. Our analysis suggests that the observed differences are not significant (the p-

values for all metrics are > 0.4), at least for the current dataset (Table S4). More detailed studies 

on larger datasets would be needed to reach a more certain conclusion. 

Comparison of ENM modes with motions present in MD structural ensembles. It is also 

interesting to test whether the motions predicted by ENMs correlate with the set of motions 

sampled by MD simulations of the same protein. Starting from the representative structure for 

each protein, we construct the different types of ENMs and investigate how well the modes 

compare with the motions extracted by PCA from the MD structural ensemble for each of the 17 

proteins. Table 3 shows the average values for each of the ten performance metrics for the 

different types of ENMs.  

Again, as expected the dcANM performs the best in all metrics reflecting the fact that it 

was trained on the dataset itself. The other different ENMs rank in the following order for the ten 

performance metrics: pfANM > ccANM > ANM > eANM.  And, this is the same order as seen 

in Table 1.  It can be seen that the pfANM systematically outperforms the other types of ANM in 

reproducing the protein motions in the MD dataset, even though by a small margin. Taken 

together with the results from the performance on the experimental dataset, this seems to suggest 

that the overall intrinsic dynamics of the protein is dictated primarily by its geometry, i.e., the 

distances of separation between all pairs of different residues. The specific amino acid 

interactions of course allow the protein perform its specific functions; and will account for the 
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differences in behaviors of various mutants of the protein; however, they do not much affect its 

global motions.  

Table 3. Performance of different types of ENMs in comparison with the motions present 
in the MD dataset of 17 proteins. 

Model 𝑶𝑶𝟏𝟏
𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟐𝟐

𝒎𝒎𝒎𝒎𝒎𝒎 𝑶𝑶𝟑𝟑
𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑶𝑶𝟏𝟏

𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟐𝟐
𝟐𝟐𝟐𝟐 𝑪𝑪𝑶𝑶𝟑𝟑

𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟑𝟑𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟔𝟔𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟏𝟏𝟐𝟐𝟐𝟐𝟐𝟐 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

ANM 0.42 
± 0.14 

0.46 
± 0.22 

0.40 
± 0.12 

0.68 
± 0.17 

0.68 
± 0.20 

0.68 
± 0.14 

0.68 
± 0.15 

0.70 
± 0.11 

0.70 
± 0.07 

0.65 
± 0.05 

pfANM 0.44 
± 0.14 

0.46 
± 0.21 

0.42 
± 0.09 

0.71 
± 0.15 

0.69 
± 0.20 

0.71 
± 0.15 

0.71 
± 0.15 

0.73 
± 0.10 

0.74 
± 0.06 

0.70 
± 0.04 

eANM 0.41 
± 0.15 

0.45 
± 0.22 

0.39 
± 0.12 

0.67 
± 0.18 

0.67 
± 0.21 

0.66 
± 0.15 

0.67 
± 0.16 

0.69 
± 0.12 

0.69 
± 0.08 

0.65 
± 0.06 

ccANM 0.43 
± 0.14 

0.44 
± 0.21 

0.40 
± 0.11 

0.70 
± 0.16 

0.68 
± 0.20 

0.68 
± 0.14 

0.69 
± 0.15 

0.71 
± 0.10 

0.71 
± 0.07 

0.66 
± 0.05 

dcANM* 0.51 
± 0.15 

0.44 
± 0.13 

0.44 
± 0.13 

0.80 
± 0.16 

0.77 
± 0.16 

0.75 
± 0.16 

0.78 
± 0.15 

0.74 
± 0.10 

0.71 
± 0.07 

0.63 
± 0.05 

Values for each metric (as defined in Methods) are averaged over the 17 proteins. Values for the 
best performing model are shown in bold and the next best in italics. 
*dcANM is trained using the variances of the internal distance changes between residues in each 
MD ensemble, and results are shown in italics. 

 

A comparison between the results in Table 1 and Table 3 shows a remarkable similarity 

in the abilities of the various ENMs to reproduce the motions in the ensembles of both the 

experimental sets of structures and the MD ensembles. 

 

Performance of ENMs in reproducing crystallographic B-factors. In addition to being able to 

reproduce intrinsic protein motions, another strength of the ENMs is in their being able to 

reproduce crystallographic temperature factors of the residues in the protein. Here we generate 

different types of ENMs using the representative structure for each of the 17 proteins with MD 

trajectory data and compute B-factors from the models (see Methods). The dcANM models are 

generated by adjusting the spring constants using the internal distance changes present in the 
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experimental and MD ensembles as described before. We then compute the Pearson’s 

correlations between the predicted B-factors and the crystallographic B-factors of the 

representative structure in the experimental ensemble (Table 4). 

Table 4. Correlation between experimental temperature factors and predicted B-factors 
from various types of ANMs on the experimental and MD datasets.  

Model Correlation (MD dataset)* Correlation (experimental 
dataset)# 

ANM 0.50 ± 0.14 0.53 ± 0.14 
pfANM 0.52 ± 0.17 0.56 ± 0.14 
eANM 0.51 ± 0.13 0.53 ± 0.12 
ccANM 0.48 ± 0.14 0.50 ± 0.14 
dcANM 0.53 ± 0.20 0.51 ± 0.18 

Values are averaged over the 17 proteins. Value for the best performing model is shown in bold. 
*dcANM is trained using internal distance changes between residues in the MD dataset; 
#dcANM is trained using internal distance changes between residues in the experimental dataset;  
Correlation values are with the crystallographic B-factors of the experimental representative 
structure. 

 

As can be seen in Table 4, the pfANM gives the highest correlation with crystallographic 

B-factors. The dcANM model based on the MD dataset gives only a slightly better correlation 

with B-factors than the pfANM and is probably not a significant difference. Our results also 

confirm the observation by Hamacher and McCammon32 that the eANM provides slight gains 

over the ANM in its being able to predict crystallographic B-factors (at least for the cases in the 

MD dataset). However, the values in Table 4 are all very similar. Interestingly, the eANM is 

slightly worse than the classical ANM or the ccANM at predicting motions present in the 

experimental ensembles as seen above (Tables 1 and 3). On the other hand, it is slightly better 

than the ccANM at reproducing crystallographic B-factors. This is in close agreement with 
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observations by Fuglebakk and others47 that a higher correlation with B-factors usually comes at 

the expense of the ability to predict collective protein motions.  

 

CONCLUSIONS 

In this study, we have systematically compared the motions extracted from experimental 

structure ensembles of 50 different proteins with the motions predicted using several different 

variants of ENMs. In addition to the classic ANM, we study several modified ANMs which 

account more specifically for the geometry of the protein (pfANM and dcANM) or for the amino 

acid specificity of the residues, either in energy (eANM) or in entropy (ccANM). The ccANM is 

a new model introduced in this paper, which accounts for the relative entropies of amino acid 

pairs; which were derived from the relative frequencies of contact changes within a set of 

experimental protein conformational changes.  Our results show that pfANMs (taking into 

account all distances between residues in a protein structure) are best in capturing the structural 

variations present within an experimental ensemble of the same protein. The ccANMs do 

perform better than eANMs and the classic ANMs suggesting that the pair-wise entropies are 

important for conformational changes. The main conclusion is that the distances of separation 

between residues (i.e. the geometry in pfANM) plays a larger role than the chemical nature of the 

interactions (as in eANM or ccANM) for the overall intrinsic dynamics of proteins. Interestingly 

this is consistent with the strong dependence on geometry (shape) for the slowest motions,48,49 

supporting the overall viewpoint implicit in the elastic network models that geometry alone is 

important for the important protein dynamics. 
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In addition, we also have collected large scale molecular dynamics simulation data 

available for 17 proteins in the dataset and compared their structural changes with the structural 

variations present in the experimental set and those predicted by different types of ANM. The 

correspondences observed between the MD and experimental datasets is relatively poor when 

compared to the ANMs, highlighting some of the possible sampling problems in MD datasets, 

such as the force-field used, and simulation times. We also observe that training ANMs based on 

internal distance changes between residues observed in an MD simulation (dcANM) does not 

necessarily improve the correspondence with experimental motions, at least for the dataset of 17 

proteins investigated in this study.  

We find that some ANMs, specifically the pfANM or ccANM give better agreement with 

experimental motions extracted from experimental or MD ensembles. On the other hand, they 

provide only relatively small improvements in terms of the correlation with experimental B-

factors, in agreement with previous studies. However, as observed by others47, we also find that 

agreement with B-factors and the ability to reproduce collective motions do not necessarily go 

together.  

 

ASSOCIATED CONTENT 
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Table S1, List of representative structures in the protein experimental ensembles; Table 

S2, Protein MD trajectory data; Table S3, Performance of dcANM models on the experimental 

vs MD datasets. 
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FIGURE  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Comparison of dynamical cross-correlation matrices (DCCMs) between experimental and 
MD datasets for lysozyme C (A, B) and HLA-DRA (C, D). Positive correlations between residues are 
shown red and negative correlations in blue. The two domains (α and β) of lysozyme C and HLA-DR (α1 
and α2) are indicated on top of the respective plots. 
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Table S1. List of proteins in the experimental ensemble dataset.  
Set 
# 

Protein Name #Resid
ues 

#Struct
ures 

Organism Representative 
Structure 

1 Sarcoplasmic/endoplasmic reticulum calcium ATPase 
1 i f  (SERCA1 ) 

995 63 Oryctolagus 
i l  

3NAL_A 
2 Peptidyl-prolyl cis-trans isomerase A 159 136 Homo sapiens 3ODL_A 

mailto:jernigan@iastate.edu
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3 Human Lysozyme C 131 218 Homo sapiens 1B5U_A 
4 B. anthracis Dihydrofolate reductase (DHFR) 162 76 Bacillus anthracis 3FL8_F 
5 Cytochrome c peroxidase, mitochondrial 292 165 Saccharomyces 

i i  
2AQD_A 

6 HLA class II histocompatibility antigen, D-R alpha 
h i  

172 108 Homo sapiens 1T5W_A 
7 Thaumatin I 202 80 Thaumatococcus 

d i llii 
3AOK_A 

8 FK506-binding protein 108 59 Homo sapiens 1D6O_A 
9 Human serum albumin (HSA) 555 99 Homo sapiens 2BXB_B 
10 Phi6 RNA-directed RNA polymerase 665 55 Pseudomonas phage 

Phi6 
1UVJ_A 

11 Squalene synthase 332 61 Homo sapiens 3WCF_F 
12 Camphor 5-monooxygenase 402 134 Pseudomonas 

id  
1UYU_B 

13 Azurin 129 202 Pseudomonas 
i  

1E5Y_C 
14 Proteinase K 280 61 Engyodontium 

lb  
3DVR_X 

15 Beta-lactamase 359 143 Escherichia coli 4KZ5_B 
16 Hepatitis C RNA-directed RNA polymerase 548 162 Hepatitis C virus 2XHU_B 
17 Tankyrase-2 186 64 Homo sapiens 4PNN_B 
18 Heparin-binding growth factor 1 122 61 Homo sapiens 2HW9_A 
19 Casein kinase II subunit alpha 326 78 Homo sapiens 3NGA_A 
20 Thioredoxin 1 104 80 Escherichia coli 2H73_A 
21 H-2 class I histocompatibility antigen, alpha chain 272 89 Mus musculus 1S7U_A 
22 T4 lysozyme 163 183 Enterobacteria 

h  T4 
1G0J_A 

23 GTPase HRas 165 100 Homo sapiens 4L9W_A 
24 Heparin-binding growth factor 1 121 130 Homo sapiens 1JQZ_A 
25 Aldose reductase 309 120 Homo sapiens 2IKH_A 
26 Phosphopentomutase 390 60 Bacillus cereus 3M8Z_B 
27 MHC class I antigen 274 64 Homo sapiens 1ZSD_A 
28 Carboxypeptidase B 304 58 Sus scrofa 2PJ5_B 
29 HLA class I histocompatibility antigen, A-2 alpha 

h i  
276 256 Homo sapiens 3KLA_A 

30 Chemotaxis protein CheY 115 109 Escherichia coli 3F7N_B 
31 DNA polymerase beta 326 154 Homo sapiens 8ICZ_A 
32 Human Dihydrofolate reductase 183 74 Homo sapiens 1BOZ_A 
33 Glucosylceramidase 488 64 Homo sapiens 1OGS_B 
34 D-alanyl-D-alanine Carboxypeptidase 461 72 Actinomadura sp. 4BEN_C 
35 WD repeat-containing protein 5 294 80 Homo sapiens 2H6Q_B 
36 LeuT Transporter 503 45 Aquifex aeolicus 3F3D_A 
37 Cathepsin S 217 58 Homo sapiens 2FRA_B 
38 Thermolysin 317 122 Bacillus 

th t l ti  
1KEI_A 

39 Polymerase 458 55 Human poliovirus 1 3OL6_A 
40 Hen egg white lysozyme 130 586 Gallus gallus 194L_A 
41 Beta-2-microglobulin 100 242 Mus musculus 1RJY_E 
42 Phospholipase A2 122 80 Daboia russellii 

l h ll  
1SV9_A 

43 Beta-lactamase TEM 260 59 Escherichia coli 1NYY_A 
44 Guanyl-specific ribonuclease T1 105 89 Aspergillus oryzae 1BU4_A 
45 E-coli Dihydrofolate reductase 160 80 Escherichia coli 1DHI_B 
46 Insulin-degrading enzyme 942 61 Homo sapiens 3OFI_A 
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47 Cationic trypsin 224 421 Bos taurus 1S0Q_A 
48 Elastase 1 241 116 Sus scrofa 2BD3_A 
49 Endothiapepsin 331 52 Endothia parasitica 3PI0_A 
50 Macrophage metalloelastase 153 83 Homo sapiens 3F17_A 
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Table S2. List of proteins with MD trajectory data.  

Set 
# 

Protein Name Organism Representative PDB with 
MD data 

Simulation 
Details 

1 Beta-2-microglobulin Mus musculus 1HSA Amber 8, 20 ns 
2 Camphor 5-monooxygenase Pseudomonas putida 1AKD Amber 8, 10.5 

 3 H-2 class I histocompatibility antigen, D-B 
l h  h i  

Mus musculus 1HSA Amber 8, 20 ns 
4 Thermolysin Bacillus 

th t l ti  
1FJ3 Amber 8 v1, 10 

 5 Cytochrome c peroxidase, mitochondrial Saccharomyces 
i i  

1JDR Amber 8, 10 ns 
6 HLA class I histocompatibility antigen, A-2 

l h  h i  
Homo sapiens 2BVO Amber 8, 20 ns 

7 MHC class I antigen Homo sapiens 2AXG Amber 8, 10 ns 
8 Elastase 1 Sus scorfa 1ESA Amber 9, 80 ns 
9 Thaumatin I Thaumatococcus 

d i llii 
1THV Amber 9, 80 ns 

10 HLA class II histocompatibility antigen, DR 
l h  h i  

Homo sapiens 1DLH Amber 8, 10 ns 
11 Peptidyl-prolyl cis-trans isomerase A Homo sapiens 2CPL Amber 8, 80.5 

 12 Heparin-binding growth factor 1 Homo sapiens 1FMM Amber 8, 10 ns 
13 Hen Egg White Lysozyme C Gus gallus 1DPX Amber 8, 20 ns 
14 Heparin-binding growth factor 1 Gallus gallus 1FMM Amber 8, 10 ns 
15 Human Lysozyme C Homo sapiens 1JSF Amber 8, 10 ns 
16 Phospholipase A2 Daboia russellii 

l h ll  
1BBC Amber 8, 10 ns 

17 FK506-binding protein Homo sapiens 1FKB Amber 8v1, 
100   
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Table S3. Comparison of dcANMs based on experimental and MD datasets. 
Te

st
 

 

   
  T

ra
in

   
   

  
𝑂𝑂1𝑚𝑚𝑐𝑐𝑚𝑚 𝑂𝑂2𝑚𝑚𝑐𝑐𝑚𝑚 𝑂𝑂3𝑚𝑚𝑐𝑐𝑚𝑚 𝐶𝐶𝑂𝑂120 𝐶𝐶𝑂𝑂220 𝐶𝐶𝑂𝑂320 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃32  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃62  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃12  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃22  

Ex
p  

M
D

 0.3
2 

0.3
3 

0.3
7 

0.5
6 

0.5
7 

0.6
4 0.60 0.57 0.54 0.49 

M
D

 

 

Ex
p 

   
   

0.3
4 

0.3
2 

0.3
0 

0.6
0 

0.5
6 

0.5
5 0.58 0.58 0.56 0.50 

Values for each metric are averaged over the 17 proteins.  

The ‘Train’ set refers to the ensemble from which the internal distance changes 
were extracted to train the dcANM. The dcANM is built on the representative 
structure in each dataset. The ‘Test’ set refers to the ensemble from which the PCs 
were extracted. The modes from the dcANM generated using the ‘Train’ set are 
tested against the PCs from the ‘Test’ set using each of the 10 different metrics. 
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Table S4. Comparison of performance metrics between short and long MD simulations 

Represent
ative PDB 

Simulat
ion 

Type 

Simulat
ion 

Time 
𝑂𝑂1𝑚𝑚𝑐𝑐𝑚𝑚 𝑂𝑂2𝑚𝑚𝑐𝑐𝑚𝑚 𝑂𝑂3𝑚𝑚𝑐𝑐𝑚𝑚 𝐶𝐶𝑂𝑂120 𝐶𝐶𝑂𝑂220 𝐶𝐶𝑂𝑂320 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃32  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃62  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃102  𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑃𝑃22  

1HSA Short 20 0.2
8 

0.2
4 

0.3
0 

0.5
3 

0.5
3 

0.6
6 0.58 0.63 0.62 0.57 

1AKD Short 10.5 0.3
8 

0.3
1 

0.2
5 

0.7
3 

0.6
1 

0.6
2 0.66 0.61 0.58 0.53 

1HSA Short 20 0.5
5 

0.4
6 

0.4
3 

0.9
0 

0.8
1 

0.7
8 0.83 0.76 0.68 0.57 

1FJ3 Short 10 0.5
5 

0.3
2 

0.4
3 

0.7
8 

0.5
8 

0.8
2 0.73 0.67 0.59 0.51 

1JDR Short 10 0.2
0 

0.1
2 

0.3
2 

0.4
3 

0.2
7 

0.5
6 0.44 0.46 0.45 0.44 

2BVO Short 20 0.7
6 

0.6
2 

0.4
3 

0.8
9 

0.9
1 

0.7
1 0.84 0.78 0.70 0.62 

2AXG Short 10 0.6
7 

0.2
9 

0.4
4 

0.9
0 

0.5
4 

0.8
4 0.77 0.68 0.65 0.57 

1ESA Long 80 0.2
2 

0.3
6 

0.2
3 

0.4
8 

0.6
3 

0.6
5 0.59 0.62 0.62 0.55 

1THV Long 80 0.1
7 

0.4
1 

0.5
3 

0.3
8 

0.6
6 

0.8
2 0.64 0.60 0.59 0.52 

1DLH Short 10 0.3
4 

0.5
2 

0.3
6 

0.7
1 

0.8
9 

0.7
5 0.78 0.70 0.67 0.57 

2CPL Long 80.5 0.1
3 

0.2
1 

0.2
1 

0.3
1 

0.4
2 

0.5
4 0.43 0.52 0.58 0.56 

1FMM Short 10 0.3
5 

0.3
0 

0.3
4 

0.5
8 

0.5
8 

0.7
5 0.65 0.64 0.60 0.54 

1DPX Short 20 0.3
7 

0.3
3 

0.3
1 

0.5
6 

0.7
6 

0.6
2 0.65 0.70 0.70 0.67 

1FMM Short 10 0.2
4 

0.3
9 

0.2
7 

0.5
0 

0.6
1 

0.5
3 0.55 0.54 0.53 0.49 

1JSF Short 10 0.4
7 

0.5
6 

0.3
9 

0.7
2 

0.7
9 

0.7
4 0.75 0.69 0.69 0.62 

1BBC Short 10 0.3
8 

0.3
1 

0.5
2 

0.7
8 

0.6
4 

0.7
7 0.73 0.67 0.60 0.53 

1FKB Long 100 0.3
2 

0.5
4 

0.4
6 

0.5
8 

0.8
4 

0.7
3 0.73 0.74 0.70 0.62 

 

P-value (Wilcoxon Test)* 
1.0
0 

0.3
9 

0.5
6 

0.9
9 

0.4
8 

0.6
9 0.95 0.85 0.61 0.56 

P-value (Welch's t-test)# 
1.0
0 

0.4
4 

0.5
5 

0.9
9 

0.5
7 

0.6
2 0.88 0.74 0.46 0.39 

*Wilcoxon rank sum test with 𝐻𝐻𝑡𝑡:𝜇𝜇𝑆𝑆 = 𝜇𝜇𝐿𝐿 and with 𝐻𝐻𝐴𝐴:𝜇𝜇𝑆𝑆 < 𝜇𝜇𝐿𝐿 
#Welch’s t- test with 𝐻𝐻𝑡𝑡:𝜇𝜇𝑆𝑆 = 𝜇𝜇𝐿𝐿 and with 𝐻𝐻𝐴𝐴:𝜇𝜇𝑆𝑆 < 𝜇𝜇𝐿𝐿 
(S = short simulations < 80 ns; L = long simulations ≥80 ns) 
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