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FIGURE 6 | Phylogeny of the GA biosynthetic operon. Unrooted Maximum Likelihood phylogenetic tree of the operon nucleotide sequence spanning CYP112 to KS
including intergenic regions. Bootstrap values were determined with 1000 replicates using MEGA 7. The scale bar represents substitutions per site and the asterisk
(� ) indicates operons with inactivating mutations in at least one gene. The GA operon genes found within boxed species have been functionally characterized. The
GeneBank accession numbers of the contig containing the operon for each of the presented bacteria can be found in Supplementary Table S2.

genome of all three species are not completely assembled and the
contigs with the operon have few adjoining genes.

Beyond such implications for the origin of the operon in
β-rhizobia, a number of other observations were derived from
the bioinformatic analyses carried out here. For example, copies
were found in Lonsdalea quercina subsp. britanica and Lonsdalea
quercina subsp. iberica, which are close relatives of Erwinia
tracheiphila, and are pathogens of oak trees (Brady et al., 2012).
The Lonsdalea operons are also most closely related to that
from E. tracheiphila (Figure 6 and Supplementary Figure S2),
which has already been shown to be fully functional (Nagel and
Peters, 2017b). However, the operons from Lonsdalea all are
disrupted by an inactivating frame-shift mutation in CYP112,
with several exhibiting additional inactivating mutations in other
genes (Supplementary Table S2), suggesting that these are
no longer functional, presumably reflecting a loss of selective
pressure for GA production in these phytopathogens.

In the Xanthomonas genus, consistent with a previous report
(Nagel et al., 2017), the operon is selectively present in certain
pathovars of X. oryzae, namely Xanthomonas oryzae pv. oryzicola
(all 21 sequenced genomes), but not in the other major pathovar
Xanthomonas oryzae pv. oryzae, where it is not found in any
of the 380 genomes currently available. By contrast, the operon
is widespread in X. translucens, where it is present in all 48
sequenced genomes, which cover a range of pathovars, although
there appears to be a premature stop codon in CYP115 in 3 of
the 5 sequenced strains from Xanthomonas translucens pv. poae

(Supplementary Table S2). These form a distinct cluster within
the relevant clade from X. translucens (Langlois et al., 2017),
perhaps indicating some loss of selective pressure for production
of bioactive GA4 relative to the immediate precursor GA9 in this
group of non-cereal phytopathogens. Regardless, it seems clear
that X. translucens acquired the operon early, with the selective
advantage provided by the production of GA4 leading to its
widespread retention (i.e., vertical descent).

In addition, the operon was found in two new Xanthomonas
species, X. axonopodis and X. theicola, although the operon in
X. axonopodis appears to be missing CYP115 (Supplementary
Table S2). While the division between the operons in
X. translucens and X. theicola relative to X. oryzae, X. bromi
and X. axonopodis reflects their broader phylogenic relationship
(Merda et al., 2017), the numerous other species within the
Xanthomonas genus that completely lack the operon indicate
that these individually acquired the operon – i.e., via horizontal
gene transfer. Consistent with this hypothesis, X. translucens
and X. theicola represent a quite divergent group even within
the broader Xanthomondaceae family (Naushad et al., 2015).
Moreover, although X. oryzae, X. bromi and X. axonopodis
all come from the same clade within this genus they do not
otherwise group together (Merda et al., 2017), and the selective
presence of the operon in X. oryzae pv. oryzicola versus X. oryzae
pv. oryzae, as well as in Xanthomonas axonopodis DSM 3585
versus other strains of X. axonopodis (several of which have
genome sequences available), suggests that even within this clade
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the operon also may be acquired by horizontal gene transfer
rather than vertical descent.

Interestingly, the operon from X. theicola is more closely
related to those from α-rhizobia than even those from
X. translucens (Figure 6 and Supplementary Figure S2).
Accordingly, while the absence of CYP115 in X. axonopodis
nominally resembles the operon structure in α-rhizobia,
this appears to represent an independent gene loss event.
In particular, the presence of CYP115 in the much more
closely related X. theicola operon supports the hypothesis that
α-rhizobia originally acquired a full operon with subsequent
early loss of CYP115, which contrasts with the complete
gene loss observed in β-rhizobia, in that a non-functional
fragment remains in almost all α-rhizobia. This further
implies that direct production of bioactive GA4 is generally
selected against in the symbiotic relationship between these
rhizobia and their leguminous hosts. However, at least one
α-rhizobia GA biosynthetic operon retains CYP115 (i.e., in
the same position as found in gamma-proteobacteria copies),
and this appears to have undergone independent gene transfer
into a subset of other α-rhizobia (Nett et al., 2017a),
indicating that such direct hormone biosynthesis does provide
a selective advantage for at least the α-rhizobia under certain
circumstances.

In conclusion, the results reported here extend our
understanding of the phylogenetic range for functional
acquisition of the GA biosynthetic operon beyond those
previously characterized from alpha- and gamma- into beta-
proteobacteria as well. Moreover, the phylogenetic analysis not
only supports the hypothesis that the operon arose in the gamma-
proteobacteria, but also the previously advanced hypothesis
that this was acquired by independent horizontal gene transfer

by both α- and β-rhizobia (Nagel and Peters, 2017b), as well
as suggesting more specific origins. Strikingly, this further
supports independent loss of CYP115 in both classes of rhizobia,
implying that direct production of bioactive GA4 relative to the
immediate precursor GA9 generally (although not universally)
has deleterious effects in such symbiotic relationships. While this
has been suggested to stem from suppression of the host plant
defense response against microbial pathogens (Nett et al., 2017a),
the actual selective pressure against retention of CYP115 remains
unclear, representing an avenue for future investigation.
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