The ability of plant essential oils to inhibit detoxifying enzymes in *Aedes aegypti*

Jacob Johnson, Edmund Norris, Joel Coats

Pesticide Toxicology Laboratory, Department of Entomology, Iowa State University of Science and Technology, Ames, IA, USA

Objectives

1. Determine which plant essential oils are capable of inhibiting detoxification enzymes
2. Explore each major enzyme-dependent detoxification pathway available to *Aedes aegypti* mosquitoes

Results

- Each enzyme inhibitor (positive controls) successfully inhibited enzyme activity in all detoxification enzyme systems
- Broad majority of oils capable of inhibiting one or multiple detoxification enzyme systems
- Basil (Egyptian type) was the most potent cytochromes p450 inhibitor
- Geranium (bourbon type) was the most potent GST inhibitor
- Cedarwood Texas (CWT) was the most potent Esterase inhibitor
- Multiple oils seemingly increased enzyme activity, especially in the esterase system

Conclusions

- Plant essential oils are capable of inhibiting all three major detoxification enzyme systems in *Aedes aegypti*
- Interaction between oils and enzymes provides insight into mechanism of enhancement in *Aedes aegypti*
- This study highlights the importance of considering detoxification pathways in insecticide resistance
- Oils such as basil (Egyptian type) or geranium (bourbon type) may have strong effects on some, but not all detoxification enzyme systems
- Plant essential oils have the potential to act synergistically with synthetic insecticides to counter insecticide-resistant mosquito populations
- Oils that increase enzyme activity may suggest enzyme induction, and may be relevant in enhancing other insecticidal active ingredients

Future Studies

- Continue screening plant essential oils for inhibition of detoxification enzymes
- Assess IC$_{50}$ of plant essential oils in various detoxification enzyme systems
- Investigate individual plant essential oil constituent chemicals for inhibitory properties
- Compare enzyme inhibition by plant essential oils in insecticide-resistant strains

References

Acknowledgements

I would like to thank the Iowa State Honors Program for providing me with this opportunity to conduct and present my own research. I would also like to thank Dr. Joel Coats, Edmund Norris, and my other colleagues at the Pesticide Toxicology Laboratory. Their guidance made this project possible, and I have thoroughly enjoyed working with them throughout the past three years.