CO-INFECTION WITH SALMONELLA CHOLERAESUIS AND PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME (PRRS) VIRUS

FEDORKA-CRAY, P.J., WILLS, R.W., STABEL, T.J., YOON, K-J, GRAY, J.T., AND ZIMMERMAN

Porcine reproductive and respiratory syndrome virus (PRRSV) and Salmonella choleraesuis (SC) are important components of the swine respiratory disease complex. Although respiratory disease is a major clinical component of PRRS in field cases, it has been difficult to produce respiratory disease in pigs in the research environment simply by exposure to PRRSV. It has been postulated that this may be due to low pig density, ideal housing conditions, and the absence of concurrent bacterial infections in the research setting.

Pigs subclinically infected with SC are considered the most common source of infection to naïve herds. Like PRRS, it is not clear why and how subclinical infections are triggered to become acute outbreaks of disease. It has been suggested that a variety of stressors, including the presence of concurrent viral infections, may lead to clinical outbreaks of salmonellosis. On two Midwestern farms, nursery mortality due to salmonellosis reportedly increased following herd outbreaks of PRRS. This led the authors to suggest that concurrent PRRSV infection may serve to provoke clinical salmonellosis. The work reported here was intended to explore these issues. Specifically, our objective was to investigate the interactive effects of exposure to PRRSV, SC, and stress on growth performance and disease in young swine.

MATERIALS AND METHODS

Experimental Animals and Design: Two replicate trials were conducted. In each trial, 5-week-old segregated, medicated, and early weaned pigs were divided into eight treatment groups (see Table 1). Each treatment group was a different combination of three factors: inoculation with SC on day zero, inoculation with PRRSV on day three, and treatment with dexamethasone (DEX) at a rate of 2 mg/kg on days three to seven. DEX was used as a chemical proxy for stress. Use of isolation rooms and strict biosecurity measures, including showering by caretakers and investigators between rooms, were maintained to prevent transmission of infectious agents between groups of pigs.

Bacteria and Virus: Salmonella choleraesuis strain 3246pp and PRRSV isolate ISU-P (ATCC VR 2202) were used in these experiments. According to the treatment assigned to the group, pigs were intranasally challenged with 1.0 ml of \(10^6\) CFU/ml of SC and/or 1.0 ml of \(10^6\) TCID₅₀/ml PRRSV inoculum.

Biological samples and variables: A single investigator evaluated the health status of the pigs once daily over the course of the experiment. Using minimal restraint, rectal temperatures of the

*USDA-ARS-National Animal Disease Center, Ames, IA 50010 and College of Veterinary Medicine, Iowa State University, Ames, IA 50011
pigs were recorded once daily from day zero through day 14 of the experiment. Body weights of the pigs were determined on days zero and 21 of the trials. Feces, nasal swabs, and tonsil swabs were collected on days 0, 3, 7, 10, 14, 17, and 21 for qualitative bacteriological culture. Fecal samples were also submitted for quantitative bacteriological culture. Samples of tonsil, lung, liver, spleen, middle ileum, ileocolic junction, cecum, cecal contents, colon, and mesenteric, brachial, ileocolic, and colonic lymph nodes were aseptically collected at necropsy on day 21. Samples from tissues collected from SC inoculated pigs and ileocolic junction samples from non SC inoculated pigs were submitted for qualitative and quantitative bacteriological culture.

RESULTS AND DISCUSSION

Clinical evaluations: Pigs which were dually infected with SC and PRRSV exhibited clinical signs of disease. Unthriftiness, rough hair coats, dyspnea, and diarrhea were most prevalent. The PSD pigs were the most severely affected; three of the PSD pigs either died or were euthanized due to the severity of the disease. The PSD death loss was statistically significant by a Fischer’s exact test (p=0.010).

Body temperature: The proportion of pigs within treatment groups which had fevers was considered a more clinically relevant measure than mean temperature. Temperatures greater than the 97.5 percentile temperature (40.06 °C) of all pigs on day zero were considered abnormal (fever). The results indicated that the presence of fever was primarily the result of SC infection, but fever was exacerbated by either PRRSV or DEX in SC-infected pigs.

Body weight: Both percentage increase in body weight (IBW) and average daily gain (ADG) were affected by treatment. The relatively small numbers in treatment groups made it difficult to form conclusions, but suggested trends. It should be noted that the pigs which died, all from group PSD, were excluded from the analysis. At the time of death all three pigs weighed less than their day zero body weight. Therefore, the values for the PSD group were biased upward by the exclusion of the most severely affected pigs. DEX in combination with PRRSV, SC, or both had the lowest values for both parameters. The overall trends suggested that growth performance was most severely affected by pathogens in conjunction with stress; infection alone did not greatly affect growth performance.

Fecal quantitative bacteriology: Significant differences between treatments (p=0.0099) were shown by analysis of variance for repeated measures of SC levels in fecal samples. The level of SC in fecal samples was measured by determining the most probable number (MPN) of SC per gram of feces. The mean of the log_{10} MPN/g feces of the PSD group was significantly greater (p<0.05, Duncan’s Multiple Range Test) than the NSN group on days 7, 10, 14, and 21; the PSN group on days 10 and 14; and the NSD group on day 10.

Since the clinical severity of salmonellosis is known to be dose-dependent, prolonged and elevated shedding of SC by dual (NSD, PSN) and triple (PSD) treatment groups suggested the possibility that disease outbreaks in the field may be the result of high dose exposures of susceptible pigs from stressed and/or PRRSV-infected herdmates.
Postmortem tissue bacteriology: Significant differences were seen among treatment groups in the proportion of pigs which were SC positive for particular postmortem tissues. Tissues assayed included mediastinal lymph node, cecal contents, middle ileum, and lung. When all tissues sampled at postmortem were considered, a similar pattern was seen. PSD had a significantly greater (p<0.008, Bonferroni Method) proportion than the other groups. The NSD and PSN groups were intermediate and similar to each other. The NSN group had the smallest proportion of positive tissues. Further, the mean log_{10} MPN/g of cecal contents of PSD pigs was significantly greater (p<0.05, Duncan’s Multiple Range Test) than the other groups. The results indicate the PSD pigs, and to a lesser degree the NSD and PSN pigs, were less able to respond to SC infection resulting in a greater distribution and level of SC in tissues.

REFERENCES

Table 1. Eight treatment groups derived from all combinations of S. choleraesuis (SC), porcine reproductive and respiratory syndrome virus (PRRSV), and dexamethasone (DEX).