TRACKING SALMONELLA ON THE FARM: A FARROW TO FINISH STUDY.

FEDORKA-CRAY, P.J., McKEAN, J., AND BERAN, G.

The cost associated with food borne related illness in humans is estimated to be between $7.7 and $8.4 billion dollars annually and for the period 1973-1987 Salmonella accounted for 42% of the outbreaks and 51% of the cases (1). Pork was implicated as the food vehicle for 25 outbreaks during this period. In other studies (2), pork was responsible for 11% of the Salmonella outbreaks attributed to meat. The presence of Salmonella spp. in meat animals has resulted in salmonellosis becoming the most important zoonosis in developed countries.

In addition to its impact on the human population, salmonellosis is also a major economic disease of swine. The septicemia or enterocolitis experienced by weaned to adult aged pigs is reported to result in millions of dollars in lost income to the pork industry. Although there is a plethora of information regarding the pathogenesis and molecular biology of Salmonella spp., there is a paucity of information concerning the prevalence and incidence of those species (serotypes) associated with (or having the potential to contribute to) food borne disease. Diagnostic centers provide clinical reports and the National Veterinary Services Laboratories publishes an annual report on the recovery of Salmonella from swine and other animals (3). However, this information is usually obtained because clinical disease was present. Currently, there is no reliable information regarding the prevalence of Salmonella spp. in swine. Some information on Salmonella in grower/finisher swine will be available from the National Animal Health Monitoring System (NAHMS) Swine '95 study.

While the carrier state has been defined for S. typhimurium and S. choleraesuis under experimental conditions (4,5,6,7,8), little is known about the exact modes of transmission and maintenance of the disease in swine herds. Transmission is thought to occur from introduction of carrier animals into the herd, through contaminated feed, or by exposure to infected rodents and/or farm personnel (9,10). However, most field studies have not examined a single population of pigs from farrow through finish when dealing with the epidemiology of Salmonella on the farm, choosing instead to sample pen fecal samples only (11,12). Even with the recent introduction of serologic testing of finisher swine for anti-salmonellae antibodies (13), information is lacking regarding the age of seroconversion on the farm. The objectives of this work are to determine the prevalence of Salmonella in swine from farrow through finish. The goal is to be able to assess the level of Salmonella within a farm environment as well as assess the serotypes most often recovered from swine and determine if these serotypes carry through in finished product.

MATERIALS AND METHODS

We solicited cooperation from a swine producer from Iowa to determine the prevalence of

USDA-ARS-National Animal Disease Center, Ames, Iowa 50010 and Department of Microbiology, Immunology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
Salmonella spp. in his multi-site production facility. Surveillance began with the selection and tagging of 100 pigs at birth from multiple litters which were monitored through to slaughter weight. At select intervals (1, 4, 9, 14, 18 weeks of age, and at slaughter) swabs, fecal samples and serum were collected from all of the tagged pigs. Additionally, 10 of the tagged pigs were necropsied at each sampling point weeks 1 through 18, 10 pigs were necropsied at slaughter weight but prior to removal from the farm, and 30 pigs were followed through slaughter at the processing plant. (Ten additional pigs were selected factoring in loss due to death or other means.) Tissues were collected for bacteriology and included tonsil, mandibular lymph node, lung, bronchiole lymph node, liver, spleen, middle ileum, ileocecal junction, ileocolic lymph nodes, cecum, cecal contents, colon, colonic lymph nodes, and stomach wall. Additionally, cheek meat was also collected for bacteriology. Bacteriologic protocols were followed as previously described (6,7,8). Blood was collected from pigs throughout the sampling times and sera was tested using ELISA technology developed in our laboratory (6,7).

In order to assess the impact of the farm environment on the tagged population of pigs, random pen fecal culture of age matched litter mates on the farm which were not necropsied or followed through to commercial slaughter were collected. The farm environment was sampled throughout this period and included feed, rodents, flies, and water.

At slaughter weight, 10 pigs were slaughtered at the farm prior to shipping. Thirty remaining pigs were transported by conventional means to slaughter and samples were collected following transport, after lairage but before slaughter, and after slaughter.

RESULTS AND DISCUSSION

Ten serotypes and one untypable isolate were recovered during the study. The farm environment was positive throughout the study but only 3/100 pigs were positive by fecal loop. Tissues were negative through 9 weeks. At 14 weeks, five serotypes were recovered from the tissues of seven pigs, two serotypes which had been previously identified on the farm and three serotypes which had never been recovered from the farm environment. At slaughter, only 5 of 40 pigs were tissue positive. Feed was positive at 4, 9, and 18 weeks and at slaughter. Serotypes found in the feed were also recovered from pigs and the environment. All rodents and flies were negative. Approximately 90% of the pigs were positive by serology at 1 week of age. This value decreased to 15% by week 9 but rose to 52% at slaughter. However, there did not appear to be a correlation between serology and culture as related to the carcass at slaughter. These data indicate that the life cycle of Salmonella on the farm will fluctuate over time and that seroconversion, as determined by our ELISA, does not predict the likelihood that Salmonella spp. will be present on the carcass.

REFERENCES:

