Overcoming fatigue through compression for advanced elastocaloric cooling

Thumbnail Image
Date
2018-04-11
Authors
Hou, Huilong
Cui, Jun
Qian, Suxin
Catalini, David
Hwang, Yunho
Radermacher, Reinhard
Takeuchi, Ichiro
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and Engineering
Abstract

Elastocaloric materials exhibit extraordinary cooling potential, but the repetition of cyclic mechanical loadings during long-term operation of cooling systems requires the refrigerant material to have long fatigue life. This article reviews the fundamental cause of fatigue from aspects of initiation and propagation of fatigue cracks in shape-memory alloys (SMAs) that are used as elastocaloric materials, and highlights recent advances in using compression to overcome fatigue by curtailing the generation of surfaces associated with crack propagation. Compression is identified as a key means to extend fatigue lifetime in engineering design of elastocaloric cooling drive mechanisms. We summarize the state-of-the-art performance of different SMAs as elastocaloric materials and discuss the influence of low cyclic strains and high resistance to transformation. We present integration of compression-based material assemblies into a cooling system prototype and optimization of the system efficiency using work recovery and related measures.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections