Coloring count cones of planar graphs

Zdenek Dvorak
Charles University, Prague

Bernard Lidicky
Iowa State University, lidicky@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs
Part of the Discrete Mathematics and Combinatorics Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/math_pubs/213. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Coloring count cones of planar graphs

Abstract
For a plane near-triangulation G with the outer face bounded by a cycle C, let \(n^G \) denote the function that to each 4-coloring \(\psi \) of C assigns the number of ways \(\psi \) extends to a 4-coloring of G. The block-count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function \(n^G \) belongs to a certain cone in the space of all functions from 4-colorings of C to real numbers. We investigate the properties of this cone for \(|C|=5\), formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.

Disciplines
Discrete Mathematics and Combinatorics

Comments
This is a pre-print made available through arxiv: https://arxiv.org/abs/1907.04066.
Coloring count cones of planar graphs

Zdeněk Dvořák* Bernard Lidický†

July 10, 2019

Abstract

For a plane near-triangulation G with the outer face bounded by a cycle C, let n^{\star}_G denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G. The block-count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function n^{\star}_G belongs to a certain cone in the space of all functions from 4-colorings of C to real numbers. We investigate the properties of this cone for $|C|=5$, formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.

By the Four Color Theorem [1, 2, 5], every planar graph is 4-colorable. Nevertheless, many natural followup questions regarding 4-colorability of planar graphs are wide open. Even very basic precoloring extension questions, such as the one given in the following problem, are unresolved (a near-triangulation is a connected plane graph in which all faces except for the outer one have length three).

Problem 1. Does there exist a polynomial-time algorithm which, given a near-triangulation G with the outer face bounded by a 4-cycle C and a 4-coloring ψ of C, correctly decides whether ψ extends to a 4-coloring of G?

Note that there exist infinitely many near-triangulations G with the outer face bounded by a 4-cycle C such that not every precoloring of C extends to a 4-coloring of G; and we do not have any good guess at how the near-triangulations with this property could be described.

Nevertheless, we do have some information about the precoloring extension properties of plane near-triangulations. For a plane near-triangulation G with the outer face bounded by a cycle C, let n^{\star}_C denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G; hence, ψ extends to a 4-coloring of G if and only if $n^{\star}_C(\psi) \neq 0$. Suppose

*Computer Science Institute (CSI) of Charles University, Malostranské náměstí 25, 118 00 Prague, Czech Republic. E-mail: raktver@iuuk.mff.cuni.cz. Supported by the Neuron Foundation for Support of Science under Neuron Impuls programme.

†Department of Mathematics, Iowa State University, Ames, IA, USA. E-mail: bidicky@iastate.edu. Supported in part by NSF grants DMS-1600390 and DMS-1855653.
Figure 1: Precolorings \(\psi_1, \psi_2, \) and \(\psi_3 \) of a 4-cycle.

\(C = v_1v_2v_3v_4 \) is a 4-cycle and \(\psi_1, \psi_2 \) and \(\psi_3 \) are its 4-colorings such that
\(\psi_i(v_j) = j \) for \(i \in \{1, 2, 3\} \) and \(j \in \{1, 2\} \),
\(\psi_1(v_3) = \psi_3(v_3) = 1, \psi_2(v_3) = 3, \)
\(\psi_2(v_4) = \psi_3(v_4) = 2, \) and \(\psi_3(v_4) = 4; \) see Figure 1.

A standard Kempe chain argument shows that if \(n^*_G(\psi_1) \neq 0 \), then
\(n^*_G(\psi_2) \neq 0 \) or \(n^*_G(\psi_3) \neq 0 \).

Actually, much more information can be obtained along these lines, using the idea of \textit{Block-count reducibility} \cite{3, 4} developed in connection with the attempts to prove the Four Color Theorem: Certain inequalities between linear combinations of
\(n^*_G(\psi_1), n^*_G(\psi_2), \) and \(n^*_G(\psi_3) \) are satisfied for all near-triangulations \(G \), or equivalently, the vector \((n^*_G(\psi_1), n^*_G(\psi_2), n^*_G(\psi_3)) \) is contained in a certain cone in \(\mathbb{R}^3 \). The main goal of this note is to present and motivate a conjecture regarding this cone in the case of near-triangulations with the outer face bounded by a 5-cycle; this conjecture strengthens the Four Color Theorem. We also provide evidence supporting this conjecture.

1 Definitions

In order to describe the cone we alluded to in the introduction, we need a number of definitions, which we introduce in this section. It is easier to state the idea in the dual setting of 3-edge-colorings of cubic plane graphs, which is well-known to be equivalent to 4-coloring of plane triangulations \cite{6}.

1.1 Near-cubic graphs and their edge-colorings

Let \(G \) be a connected graph and let \(v \) be a vertex of \(G \). We consider each edge of \(G \) as consisting of two half-edges. Let \(\nu \) be a bijection between the half-edges incident with \(v \) and \(\{0, \ldots, \deg(v) - 1\} \) (so, if \(v \) is incident with a loop, each half of the loop is assigned a different number by \(\nu \)). If all vertices of \(G \) other than \(v \) have degree three, we say that \(\tilde{G} = (G, v, \nu) \) is a near-cubic graph. We say that \(G \) is a \textit{plane near-cubic graph} if \(G \) is a plane graph and the half-edges incident with \(v \) are drawn around it in the clockwise cyclic order \(\nu^{-1}(0), \ldots, \nu^{-1}((\deg(v) - 1)) \). We define \(d(\tilde{G}) = \deg(v) \).

A \textit{3-edge-coloring} of \(\tilde{G} \) is an assignment of colors 1, 2, and 3 to edges of \(G \) such that any two edges incident with a common vertex other than \(v \) have different colors. For an integer \(d \geq 2 \), a function \(\psi : \{0, \ldots, d-1\} \rightarrow \{1, 2, 3\} \) is
a d-precoloring if $|\psi^{-1}(1)| \equiv |\psi^{-1}(2)| \equiv |\psi^{-1}(3)| \equiv d \pmod{2}$. We say that a 3-edge-coloring φ of \tilde{G} extends a $d(\tilde{G})$-precoloring ψ if for any edge e incident with v and a half-edge h of e incident with v, we have $\varphi(e) = \psi(v(h))$. Let $n_{\tilde{G}}(\psi)$ denote the number of 3-edge-colorings of \tilde{G} which extend ψ. Via the theory of nowhere-zero flows [7], it is easy to establish the following correspondence between 4-colorings of near-triangulations and 3-edge-colorings in their duals.

Observation 2. Let $\tilde{G} = (G,v,\nu)$ be a plane near-cubic graph, and let G^* be the dual of G drawn so that the outer face of G^* corresponds to v. Suppose the outer face of G^* is bounded by a cycle C. Then there exists a mapping f from 4-colorings of C to $d(\tilde{G})$-precolorings such that

- f maps exactly four 4-colorings of C to each $d(\tilde{G})$-precoloring, and
- every 4-coloring ψ of C satisfies $n_{\tilde{G}}^*(\psi) = n_G(f(\psi))$.

Given two near-cubic graphs $\tilde{G}_1 = (G_1, v_1, \nu_1)$ and $\tilde{G}_2 = (G_2, v_2, \nu_2)$ with $\deg(v_1) = \deg(v_2)$, let $\tilde{G}_1 \oplus \tilde{G}_2$ denote the graph obtained from \tilde{G}_1 and \tilde{G}_2 by, for $0 \leq i \leq \deg(v_1) - 1$, removing the half-edges $\nu_1^{-1}(i)$ and $\nu_2^{-1}(i)$ and connecting the other halves of the edges. Note that $\tilde{G}_1 \oplus \tilde{G}_2$ is a cubic graph, and if \tilde{G}_1 and \tilde{G}_2 are plane near-cubic graphs, then $\tilde{G}_1 \oplus \tilde{G}_2$ is a planar graph. Observe that the number of 3-edge-colorings of $\tilde{G}_1 \oplus \tilde{G}_2$ is

$$\sum_{\psi} n_{\tilde{G}_1}(\psi) n_{\tilde{G}_2}(\psi),$$

where the sum goes over all $\deg(v_1)$-precolorings ψ. For any integer $n \geq 3$, let \tilde{C}_n denote the plane near-cubic graph W_n, v, ν, where W_n is the wheel with the central vertex v adjacent to all vertices of an n-cycle.

1.2 Signatures and Kempe chains

For an integer $d \geq 2$, a d-signature is a set S of pairs (m,s), where m is an unordered pair of integers in $\{0, \ldots, d - 1\}$ and $s \in \{-1, 1\}$, satisfying the following conditions:

(i) for any distinct $(m_1, s_1), (m_2, s_2) \in S$ we have $m_1 \cap m_2 = \emptyset$, and

(ii) S does not contain elements $\{(a,b), s_1\}$ and $\{(c,d), s_2\}$ such that $a < c < b < d$.

A d-precoloring ψ is compatible in (distinct) colors $i,j \in \{1,2,3\}$ with a d-signature S if

- $\psi^{-1}(\{i,j\}) = \bigcup_{(m,s) \in S} m$, and
- for each $\{(a_1,a_2), s\} \in S$, $\psi(a_1) = \psi(a_2)$ holds if and only if $s = -1$.

Now, consider a 3-edge-coloring \(\varphi \) of a near-cubic graph \(\tilde{G} = (G, v, \nu) \). Each vertex other than \(v \) is incident with edges of all three colors. Hence, for any distinct \(i, j \in \{1, 2, 3\} \), the subgraph \(G_{ij} \) of \(G \) consisting of edges of colors \(i \) or \(j \) is a union of pairwise edge-disjoint cycles, vertex-disjoint except for possible intersections in \(v \). An \(ij \)-Kempe chain of \(\varphi \) is a cycle \(C \) in \(G_{ij} \) containing \(v \); the sign \(\sigma(C) \) of the \(ij \)-Kempe chain \(C \) is 1 if the length of \(C \) is even and \(-1\) if the length of \(C \) is odd. If \(h_1 \) and \(h_2 \) are the half-edges in \(C \) incident with \(v \), we let \(\mu(C) = \{ \nu(h_1), \nu(h_2) \} \). The \(ij \)-Kempe chain signature \(\sigma_{ij}(\varphi) \) of \(\varphi \) is defined as \(\{ (\mu(C), \sigma(C)) : C \text{ is an } ij \text{-Kempe chain of } \varphi \} \).

Note that if \(\tilde{G} \) is plane, then the \(ij \)-Kempe chains do not cross and the \(ij \)-Kempe chain signature of \(\varphi \) satisfies the condition (ii); and thus \(\sigma_{ij}(\varphi) \) is a \(d(\tilde{G}) \)-signature.

2 Coloring count cones

Let \(\tilde{G} = (G, v, \nu) \) be a plane near-cubic graph and let \(\psi \) be a \(d(\tilde{G}) \)-precoloring. Suppose that \(\psi \) is compatible (in colors \(i, j \in \{1, 2, 3\} \)) with a \(d(\tilde{G}) \)-signature \(S \). We define \(n_{\tilde{G},S}(\psi) \) as the number of 3-edge-colorings \(\varphi \) of \(\tilde{G} \) extending \(\psi \) such that \(\sigma_{ij}(\varphi) = S \). Note that swapping the colors \(i \) and \(j \) on any set of \(ij \)-Kempe chains of \(\varphi \) results in another 3-edge-coloring with the same \(ij \)-Kempe chain signature. Furthermore, clearly for any permutation \(\pi \) of colors, we have \(n_{\tilde{G},S}(\psi \circ \pi) = n_{\tilde{G},S}(\psi) \). This establishes bijections implying the following.

Observation 3. Let \(\tilde{G} \) be a plane near-cubic graph and let \(S \) be a \(d(\tilde{G}) \)-signature. Any \(d(\tilde{G}) \)-precolorings \(\psi_1 \) and \(\psi_2 \) compatible with \(S \) satisfy

\[
n_{\tilde{G},S}(\psi_1) = n_{\tilde{G},S}(\psi_2).
\]

Hence, we can define an integer \(n_{\tilde{G},S} \) to be equal to \(n_{\tilde{G},S}(\psi) \) for an arbitrarily chosen \(d(\tilde{G}) \)-precoloring \(\psi \) compatible with \(S \).

Let \(d \geq 2 \) be an integer and let \(i, j \in \{1, 2, 3\} \) be distinct colors. For a \(d \)-precoloring \(\psi \), let us define \(S_{\psi,ij} \) as the set of \(d \)-signatures compatible with \(\psi \) in colors \(ij \). Since every 3-edge-coloring of \(\tilde{G} \) has an \(ij \)-Kempe chain signature, we have

\[
n_{\tilde{G}}(\psi) = \sum_{S \in S_{\psi,ij}} n_{\tilde{G},S}(\psi) = \sum_{S \in S_{\psi,ij}} n_{\tilde{G},S}.
\]

Let \(P_d \) denote the set of all \(d \)-precolorings and \(S_d \) the set of all \(d \)-signatures. We will work in the vector spaces \(\mathbb{R}^{P_d} \) and \(\mathbb{R}^{S_d} \) with coordinates corresponding to the \(d \)-precolorings and to the \(d \)-signatures, respectively. For each integer \(d \geq 2 \), the coloring count cone \(B_d \) is the set of all \(x \in \mathbb{R}^{P_d} \) such that

- \(x(\psi) \geq 0 \) for every \(d \)-precoloring \(\psi \), and
- there exists \(y \in \mathbb{R}^{S_d} \) such that

\[
(1)
\]
- \(y(S) \geq 0 \) for every \(d \)-signature \(S \), and
- \(x(\psi) = \sum_{S \in S_v} y(S) \) for every \(d \)-precoloring \(\psi \) and distinct colors \(i, j \in \{1, 2, 3\} \).

Note that \(B_d \) is indeed a cone, i.e., an unbounded polytope closed under linear combinations with non-negative coefficients. By (1), the vector of precoloring extension counts for any plane near-cubic graph belongs to the corresponding coloring count cone.

Theorem 4. For each plane near-cubic graph \(\tilde{G} \), we have

\[n_{\tilde{G}} \in B_{d(\tilde{G})}. \]

Each cone is uniquely determined as the set of non-negative linear combinations of its rays. For \(d \in \{2, 3, 4, 5\} \), the rays of \(B_d \) are easy to enumerate by hand or using polytope-manipulation software such as Sage Math or the Parma Polyhedra Library (a program doing so for \(d = 5 \) can be found at [http://lidicky.name/pub/4cone/] link). For a near-cubic graph \(\tilde{G} \) such that \(n_{\tilde{G}} \) is not the zero function, let \(\text{ray}(\tilde{G}) \) denote the set of all non-negative multiples of \(n_{\tilde{G}} \).

Lemma 5. Refering to graphs in Figure 3:
- the cone \(B_2 \) has exactly one ray equal to \(\text{ray}(\tilde{R}_{2,1}) \);
- the cone \(B_3 \) has exactly one ray equal to \(\text{ray}(\tilde{R}_{3,1}) \);
- the cone \(B_4 \) has exactly four rays equal to \(\text{ray}(\tilde{R}_{4,1}), \ldots, \text{ray}(\tilde{R}_{4,4}) \); and
- the cone \(B_5 \) has exactly 12 rays equal to \(\text{ray}(\tilde{R}_{5,1}), \ldots, \text{ray}(\tilde{R}_{5,12}) \).

Let us remark that \(B_6 \) has 208 rays; the direct method we employ is too slow to enumerate all rays for \(d \geq 7 \) on current workstations.

3 The cone \(B_5 \) and the conjecture

Note that while \(\tilde{R}_{5,1}, \ldots, \tilde{R}_{5,11} \) are plane, \(\tilde{R}_{5,12} \) is not. Indeed, the following holds.

Lemma 6. The following claims are equivalent.

(a) Every planar cubic 2-edge-connected graph is 3-edge-colorable.

(b) For every plane near-cubic graph \(\tilde{G} \) with \(d(\tilde{G}) = 5 \), if \(n_{\tilde{G}} \in \text{ray}(\tilde{R}_{5,12}) \), then \(n_{\tilde{G}} \) is the zero function.

Proof. Let us first prove that (a) implies (b). Consider a plane near-cubic graph \(\tilde{G} = (\tilde{G}, v, \nu) \) such that \(n_{\tilde{G}} \in \text{ray}(\tilde{R}_{5,12}) \), and thus for some constant \(c \geq 0 \), we have \(n_{\tilde{G}}(\psi) = c \cdot n_{\tilde{R}_{5,12}}(\psi) \) for every 5-precoloring \(\psi \). Observe that
Figure 2: Graphs $\tilde{R}_{2,1}, \ldots , \tilde{R}_{5,12}$. The dashed circle intersects the half-edges incident with the vertex v, which is not depicted; the values of ν are written at the respective half-edges.
$n_{\tilde{R}_{5,12}}(\psi)n_{\tilde{C}_5}(\psi) = 0$ for every 5-precoloring ψ (since $\tilde{R}_{5,12} \oplus \tilde{C}_5$ is the Petersen graph, which is not 3-edge-colorable), and thus the number of 3-edge-colorings of $G \oplus \tilde{C}_5$ is

$$\sum_{\psi} n_G n_{\tilde{C}_5}(\psi) = c \sum_{\psi} n_{\tilde{R}_{5,12}} n_{\tilde{C}_5}(\psi) = 0.$$

Hence, the planar cubic graph $\tilde{G} \oplus \tilde{C}_5$ is not 3-edge-colorable. By (a), $\tilde{G} \oplus \tilde{C}_5$ has a bridge, and thus G has a bridge. But then a standard parity argument implies that \tilde{G} has no 3-edge-coloring, and thus $n_{\tilde{G}}$ is the zero function.

Next, let us prove that (b) implies (a). Suppose for a contradiction that (b) holds, but there exists a plane cubic 2-edge-connected graph that is not 3-edge-colorable, and let H be one with the smallest number of vertices. By Euler’s formula, H has a face f of length $d \leq 5$; hence, we can write $H = \tilde{G} \oplus \tilde{C}_d$ for a plane near-cubic graph \tilde{G}. By Theorem 4, we have $n_{\tilde{G}} \in B_d$, and by Lemma 5, there exist non-negative real numbers c_i such that $n_{\tilde{G}} = \sum_i c_i n_{\tilde{R}_{d,i}}$.

Observe there exists a plane near-cubic graph \tilde{P} with $d - 1$ vertices such that $\tilde{G} \oplus \tilde{P}$ is 2-edge-connected. By the minimality of H, $\tilde{G} \oplus \tilde{P}$ is 3-edge-colorable, and in particular $n_{\tilde{G}}$ is not the zero function. By (b), $n_{\tilde{G}}$ is not a positive multiple of $n_{\tilde{R}_{5,12}}$, and thus there exists an index $k \leq 11$ such that $c_k > 0$.

Observe that $\tilde{R}_{d,k} \oplus \tilde{C}_d$ is 3-edge-colorable, and thus there exists a d-precoloring ψ_0 such that $n_{\tilde{R}_{d,k}}(\psi_0)n_{\tilde{C}_d}(\psi_0) > 0$. However, then the number of 3-edge-colorings of H is

$$\sum_{\psi} n_{\tilde{G}}(\psi)n_{\tilde{C}_d}(\psi) \geq c_k \sum_{\psi} n_{\tilde{R}_{d,k}}(\psi)n_{\tilde{C}_d}(\psi) \geq c_k n_{\tilde{R}_{d,k}}(\psi_0)n_{\tilde{C}_d}(\psi_0) > 0.$$

This contradicts the assumption that H is not 3-edge-colorable.

Note that (a) is well-known to be equivalent to the Four Color Theorem [6], and thus indeed there is no plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ such that $n_{\tilde{G}}$ is not the zero function and $n_{\tilde{G}} \in \text{ray}(\tilde{R}_{5,12})$; and furthermore, a direct proof of this fact would imply the Four Color Theorem. Motivated by this observation (and experimental evidence), we propose the following conjecture, a strengthening of the Four Color Theorem. Let B'_5 denote the cone in $\mathbb{R}P^d$ with rays $\text{ray}(R_{5,1})$, \ldots, $\text{ray}(R_{5,11})$.

Conjecture 7. Every plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ satisfies $n_{\tilde{G}} \in B'_5$.

For $i \in \{0, \ldots, 4\}$, let $\psi^{5,a}_i$ and $\psi^{5,b}_i$ denote the 5-precolorings whose values at $j \in \{0, \ldots, 4\}$ are defined by the following table; see also Figure 3.
Figure 3: Precolorings $\psi_0^{5,a}$ and $\psi_0^{5,b}$.

<table>
<thead>
<tr>
<th>$(j - i) \mod 5$</th>
<th>$\psi_i^{5,a}(j)$</th>
<th>$\psi_i^{5,b}(j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Note that each 5-precoloring is obtained from one of these ten by a permutation of colors. The cone B_5' has exactly one facet which is not also a facet of B_5, giving an equivalent formulation of Conjecture 7.

Conjecture 8. Every plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ satisfies

$$3 \sum_{i=0}^{4} n_{\tilde{G}}(\psi_i^{5,a}) \geq \sum_{i=0}^{4} n_{\tilde{G}}(\psi_i^{5,b}).$$

In the rest of the note, we provide some evidence supporting Conjecture 7; in particular, we show there are no counterexamples to the conjecture with less than 30 vertices.

4 Evidence

Before we present the experimental evidence for the validity of Conjecture 7, we need a few more definitions. A vector $x \in P_d$ is *invariant with respect to permutation of colors* if all d-precolorings ψ and ψ' that only differ by a permutation of colors satisfy $x(\psi) = x(\psi')$.

See Figure 4 for an illustration of the following definitions. The *rotation by t* of a d-precoloring ψ is the d-precoloring $r_t(\psi)$ such that $r_t(\psi)((i+t) \mod d) = \psi(i)$ for $i \in \{0,\ldots,d-1\}$. The *flip* of a d-precoloring ψ is the d-precoloring $f(\psi)$ such that $f(\psi)(i) = \psi(d-1-i)$ for $i \in \{0,\ldots,d-1\}$. For $x \in \mathbb{R}^P_d$, let $r_t(x)$ be defined as $y \in \mathbb{R}^P_d$ such that $y(r_t(\psi)) = x(\psi)$ for every d-precoloring ψ, and let $f(x)$ be defined as $z \in \mathbb{R}^P_d$ such that $z(f(\psi)) = x(\psi)$ for every d-precoloring ψ.

A set $K \subseteq \mathbb{R}^P_d$ is *closed under rotations and flips* if we have $x \in K$ if and only
Let ν be a near-cubic graph (G,v,ν) with $\deg(v) = d$, let $r_1(G)$ denote the near-cubic graph (G,v,ν_1), where $\nu^{-1}_1((i+t) \mod d) = \nu^{-1}_1(i)$ for $i \in \{0,\ldots,d-1\}$, and let $f(G)$ denote the near-cubic graph (G,v,ν_2), where $\nu^{-1}_2(i) = \nu^{-1}_2(d-1-i)$ for $i \in \{0,\ldots,d-1\}$.

Observation 9. Let \tilde{G} be a near-cubic graph, $d = d(\tilde{G})$ and $t \in \{0,\ldots,d-1\}$. Then $n_{r_t(\tilde{G})} = r_t(n_{\tilde{G}})$ and $n_{f(\tilde{G})} = f(n_{\tilde{G}})$.

Let ψ_1 be a d_1-precoloring and ψ_2 a d_2-precoloring. For an integer $k \leq \min(d_1,d_2)$, we say that ψ_1 k-matches ψ_2 if $\psi_1(d_1 - k + i) = \psi_2(d_2 - 1 - i)$ for $i \in \{0,\ldots,k-1\}$. By $\gamma_k(\psi_1,\psi_2)$, we denote the $(d_1 + d_2 - 2k)$-precoloring γ such that $\gamma(i) = \psi_1(i)$ for $i \in \{0,\ldots,d_1 - k - 1\}$ and $\gamma(i) = \psi_2(i - (d_1 - k))$ for $i \in \{d_1 - k,\ldots,d_1 + d_2 - 2k - 1\}$. For $x_1 \in \mathbb{R}^{d_1}$ and $x_2 \in \mathbb{R}^{d_2}$, we define $\gamma_k(x_1,x_2)$ as the vector $y \in \mathbb{R}^{d_1 + d_2 - 2k}$ such that

$$y = \sum_{\psi_1,\psi_2 : \gamma_k(\psi_1,\psi_2) = \psi} x_1(\psi_1)x_2(\psi_2),$$

where the sum is over all k-matching d_1-precolorings ψ_1 and d_2-precolorings ψ_2.

For near-cubic graphs $G_1 = (G_1,v_1,\nu_1)$ with $\deg(v_1) = d_1$ and $G_2 = (G_2,v_2,\nu_2)$ with $\deg(v_2) = d_2$, let $\gamma_k(G_1,G_2)$ denote the near-cubic graph (G,v,ν), where G is obtained from G_1 and G_2 by identifying v_1 with v_2 to a single vertex v and for $i \in \{0,\ldots,k-1\}$ removing the half-edges $\nu^{-1}_1(d_1 - k + i)$ and $\nu^{-1}_2(d_2 - 1 - i)$ and connecting the other halves of the edges; and $\nu^{-1}(i) = \nu^{-1}_1(i)$ for $i \in \{0,\ldots,d_1 - k - 1\}$ and $\nu^{-1}(i) = \nu^{-1}_2(i - (d_1 - k))$ for $i \in \{d_1 - k,\ldots,d_1 + d_2 - 2k - 1\}$. See Figure 5 for an illustration.

Observation 10. Let \tilde{G}_1 and \tilde{G}_2 be near-cubic graphs. For every integer $k \in \{0,\ldots,\min(d(\tilde{G}_1),d(\tilde{G}_2))\}$, we have $n_{\gamma_k(\tilde{G}_1,\tilde{G}_2)} = \gamma_k(n_{\tilde{G}_1},n_{\tilde{G}_2})$.

By a computer-assisted enumeration, we verified the following claim.

Lemma 11. There exists cones $K_d \subseteq \mathbb{R}^d$ for $d = 2,\ldots,8$ such that the following claims hold.
Figure 5: $\gamma_k(\tilde{G}_1, \tilde{G}_2)$

(a) $K_d = B_d$ when $d \leq 4$ and $K_5 = B'_5$.

(b) For all $d \in \{2, \ldots, 8\}$, the elements of K_d are invariant with respect to permutation of colors.

(c) For $d \in \{2, \ldots, 7\}$, the cone K_d is closed under rotations and flips.

(d) If $2 \leq d_1 \leq d_2$ and $d_1 + d_2 \leq 7$, then for all $x_1 \in K_{d_1}$ and $x_2 \in K_{d_2}$ we have $\gamma_0(x_1, x_2) \in K_{d_1 + d_2}$.

(e) If $2 \leq d \leq 5$, then for all $x \in K_d$ we have $\gamma_1(n_{\tilde{R}_3}, x) \in K_{d+1}$.

(f) If $3 \leq d \leq 7$, then for all $x \in K_d$ we have $\gamma_2(n_{\tilde{R}_3}, x) \in K_{d-1}$.

(g) If $2 \leq d_1 \leq 6$ and $1 \leq c \leq d_1/2$, then for all $x_1 \in K_{d_1}$ and $x_2 \in K_{7+2c-d_1}$, we have $\gamma_c(x_1, x_2) \in K_{7}$.

(h) For every $x_1 \in K_8$ and $x_2 \in K_7$, we have $\gamma_4(x_1, x_2) \in K_7$.

(i) For every $x_1, x_2 \in K_6$, we have $r_2(\gamma_2(x_1, x_2)) \in K_8$.

Proof. The proof and the program to verify the proof can be found at http://lidicky.name/pub/4cone/. The cones are described by their rays, enumerated in the file. Cone K_6 has 102 rays, K_7 has 22605 rays, and K_8 has 4330 rays. It suffices to verify all the claims for x, x_1, x_2 being the rays of the cones specified in the claims; the inclusion of the resulting vectors in the appropriate cone is certified by expressing them as a linear non-negative combination of the rays of the cone.

Parts (e) and (f) of Lemma 11 have the following corollary.

Lemma 12. Let $\tilde{G} = (G, v, \nu)$ be a plane near-cubic graph and let $d = d(\tilde{G})$. If $d \in \{2, \ldots, 7\}$ and $n_\tilde{G} \not\in K_d$, then there exists a plane near-cubic graph $G_0 = (G_0, v_0, \nu_0)$ such that $d(G_0) = 7$, $n_{\tilde{G}_0} \not\in K_7$, $G_0 - v_0$ is an induced subgraph of $G - v$, and $|V(G_0)| \leq |V(G)| - (7 - d)$.

10
Proof. We prove the claim by induction on the number of vertices of G. When $d \leq 4$, the claim is vacuously true by Theorem 4 since $K_d = B_d$. When $d = 7$, we can set $G_0 = G$. Hence, suppose that $d \in \{5, 6\}$. Since $n_{\tilde{G}} \notin K_d$, the function $n_{\tilde{G}}$ is not identically zero.

If $G - v$ is disconnected, we can by symmetry assume that $\tilde{G} = \gamma_0(\tilde{G}_1, \tilde{G}_2)$ for plane near-cubic graphs \tilde{G}_1 and \tilde{G}_2 such that $d = d(\tilde{G}_1) + d(\tilde{G}_2)$ and $d(\tilde{G}_1) \leq d(\tilde{G}_2)$. Since $n_{\tilde{G}}$ is not the zero function, $n_{\tilde{G}_1}$ is not the zero function either, and thus $d(\tilde{G}_1) \neq 1$. Hence $d(\tilde{G}_1) \geq 2$, and thus $d(\tilde{G}_2) \leq 4$. Hence, $n_{\tilde{G}_1} \in K_{d(\tilde{G}_1)}$ and $n_{\tilde{G}_2} \in K_{d(\tilde{G}_2)}$, and $n_{\tilde{G}} \in K_d$ by Lemma 11(d), which is a contradiction.

Hence, $G - v$ is connected (and the same argument shows that no loop is incident with v). Consequently, v is not incident with a triple edge. If v is incident with a double edge, then we can by symmetry assume that $\tilde{G} = \gamma_1(\tilde{G}_1, \tilde{G}_2)$ for a plane near-cubic graph $\tilde{G}_1 = (G_1, v_1, \nu_1)$ with $d(\tilde{G}_1) = d - 1 \leq 5$. By Lemma 11(e), since $n_{\tilde{G}_1} \notin K_d$, we have $n_{\tilde{G}_1} \notin K_{d-1}$. By the induction hypothesis, there exists a plane near-cubic graph $\tilde{G}_0 = (G_0, v_0, \nu_0)$ with $d(\tilde{G}_0) = 7$, such that $n_{\tilde{G}_0} \notin K_7$, $G_0 - v_0$ is an induced subgraph of $G_1 - v_1$, and thus also of $G - v$, and $|V(G_0)| \leq |V(G_1)| - (7 - (d - 1)) < |V(G)| - (7 - d)$, as required.

Hence, we can assume v is not incident with a double edge. Consequently, we can by symmetry assume that $\tilde{G} = \gamma_1(\tilde{G}_1, \tilde{G}_2)$ for a plane near-cubic graph $\tilde{G}_1 = (G_1, v_1, \nu_1)$ with $d(\tilde{G}_1) = d + 1$. By Lemma 11(f), since $n_{\tilde{G}_1} \notin K_d$, we have $n_{\tilde{G}_1} \notin K_{d+1}$. By the induction hypothesis, there exists a plane near-cubic graph $\tilde{G}_0 = (G_0, v_0, \nu_0)$ with $d(\tilde{G}_0) = 7$, such that $n_{\tilde{G}_0} \notin K_7$, $G_0 - v_0$ is an induced subgraph of $G_1 - v_1$, and thus also of $G - v$, and $|V(G_0)| \leq |V(G_1)| - (7 - (d + 1)) = |V(G)| - (7 - d)$. Hence, the claim of the lemma follows.

We will say that a plane near-cubic graph $\tilde{G} = (G, v, \nu)$ is extremal if $d(\tilde{G}) = 7$, $n_{\tilde{G}} \notin K_7$, and there does not exist any plane near-cubic graph $\tilde{G}_0 = (G_0, v_0, \nu_0)$ with $d(\tilde{G}_0) = 7$ such that $n_{\tilde{G}_0} \notin K_7$ and $G_0 - v_0$ is a proper minor of $G - v$.

Lemma 13. If $\tilde{G} = (G, v, \nu)$ is an extremal plane near-cubic graph and $\tilde{G}' = (G', v', \nu')$ is a plane near-cubic graph with $d(\tilde{G}') \leq 7$ such that $G' - v'$ is a proper minor of $G - v$, then $n_{\tilde{G}'} \in K_{d(\tilde{G}')}$.

Proof. If $n_{\tilde{G}} \notin K_{d(\tilde{G}')}$, then by Lemma 11 there would exist a plane near-cubic graph $\tilde{G}_0 = (G_0, v_0, \nu_0)$ such that $d(\tilde{G}_0) = 7$, $n_{\tilde{G}_0} \notin K_7$ and $G_0 - v_0$ is an induced subgraph of $G' - v'$. However, then $G_0 - v_0$ would be a proper minor of $G - v$, contradicting the assumption that \tilde{G} is extremal.

Next, let us explore consequences of part (g) of Lemma 11.

Lemma 14. If $\tilde{G} = (G, v, \nu)$ is an extremal plane near-cubic graph, then v is not incident with loops or parallel edges and $G - v$ is 2-edge-connected.

Proof. Analogously to the proof of Lemma 12 if v were incident with a loop or a parallel edge or if $G - v$ were not 2-edge-connected, we would have $\tilde{G} = \gamma_0(\tilde{G}_1, \tilde{G}_2)$ for plane near-cubic graphs \tilde{G}_1 and \tilde{G}_2 such that $d = d(\tilde{G}_1) + d(\tilde{G}_2)$ and $d(\tilde{G}_1) \leq d(\tilde{G}_2)$. Since $n_{\tilde{G}}$ is not the zero function, $n_{\tilde{G}_1}$ is not the zero function either, and thus $d(\tilde{G}_1) \neq 1$. Hence $d(\tilde{G}_1) \geq 2$, and thus $d(\tilde{G}_2) \leq 4$. Hence, $n_{\tilde{G}_1} \in K_{d(\tilde{G}_1)}$ and $n_{\tilde{G}_2} \in K_{d(\tilde{G}_2)}$, and $n_{\tilde{G}} \in K_d$ by Lemma 11(d), which is a contradiction.
γc(˜G1, ˜G2) for plane near-cubic graphs ˜G1 and ˜G2 such that $2 \leq d(˜G1) \leq d(˜G2)$, $d(˜G1) + d(˜G2) = 7 + 2c$, and $c \leq 1$; in particular, $d(˜G2) \leq 7$ and $d(˜G1) \leq \left\lfloor (7 + 2c)/2 \right\rfloor \leq 4$. By Lemma 13, we have $n_{˜G_i} \in K_{d(˜G_i)}$ for $i \in \{1, 2\}$. By Lemma 11(g), we conclude $n_{˜G} \in K_7$, which is a contradiction.

Suppose A and B form a partition of the vertex set of a graph H, and let S be the set of edges of H with one end in A and the other end in B. In this situation, we say S is an edge cut of H with sides A and B.

Lemma 15. If $G = (G,v,ν)$ is an extremal plane near-cubic graph, then $G - v$ does not contain an edge cut S such that v has at least $|S|$ neighbors in each side of the cut.

Proof. Suppose for a contradiction $G - v$ contains such an edge cut S of size c, and thus $G = γc(˜G1, ˜G2)$ for plane near-cubic graphs ˜G1 and ˜G2 such that $2c \leq d(˜G1) \leq d(˜G2)$ and $d(˜G1) + d(˜G2) = 7 + 2c$. Since v has 7 neighbors and at least c of them are contained in each of the sides of the cut, we have $c \leq 3$. Note that $d(˜G2) \leq 7$ and $d(˜G1) \leq \left\lfloor (7 + 2c)/2 \right\rfloor \leq 6$. By Lemma 13 we have $n_{˜G_i} \in K_{d(˜G_i)}$ for $i \in \{1, 2\}$. By Lemma 11(g), we conclude $n_{˜G} \in K_7$, which is a contradiction.

An edge cut S of size at most five in a near-cubic graph $G = (G,v,ν)$ is essential if the side of S containing v contains at least one other vertex and the other side B of S induces neither a tree nor a 5-cycle.

Lemma 16. If $G = (G,v,ν)$ is an extremal plane near-cubic graph, then G does not contain an essential edge cut S of size at most five.

Proof. Suppose for a contradiction G contains an essential edge-cut S of size $k \leq 5$, and choose one with minimum k, and subject to that one for which the side B not containing v is minimal. We claim $G[B]$ is 2-edge-connected. Otherwise, B is a disjoint union of non-empty sets B_1 and B_2, where G contains $r \leq 1$ edges with one end in B_1 and the other end in B_2. For $i \in \{1, 2\}$, let S_i denote the set of edges of G with exactly one end in B_i. Since G is extremal, $n_{˜G} \notin K_7$ is not identically zero, and thus G is 2-edge-connected, implying $|S_i| \geq 2$. Hence, $|S_i| = k + 2r - |S_{3-i}| \leq k$. By the minimality of B, we conclude that B_1 induces a tree or a 5-cycle, and thus $|S_1| \geq 3$. Hence $5 \geq k = |S_1| + |S_2| - 2r \geq 6 - 2r$, and thus $r = 1$ and $|S_1|, |S_2| \leq 4$. This implies that neither B_1 nor B_2 induces a 5-cycle, and thus both of them induce trees; and G contains an edge between them, implying that B induces a tree, contrary to the assumption that S is an essential edge cut.

Since $G[B]$ is 2-edge-connected and subcubic, each face of $G[B]$ is bounded by a cycle. Let C_S denote the cycle bounding the face f of $G[B]$ whose interior contains v. Observe that all edges of S are drawn inside f. Otherwise, the set S' of edges of S drawn inside C forms an edge cut of order smaller than k and by the minimality of k, its side $B' \supseteq B$ induces a tree or a 5-cycle; this is not possible, since $G[B]$ is 2-edge connected and not a tree.
Let \tilde{G}_c be the plane near-cubic graph obtained from G by contracting the side of the cut containing v to a single vertex. By Lemma 13 we have $n_{\tilde{G}_c} \in K_k$. Since $K_d = B_d$ for $d \leq 4$ and $K_5 = B'_5$,

$$n_{\tilde{G}_c} = \sum_i c_i n_{R_{k,i}},$$

where $i \leq 11$ if $k = 5$ and the coefficients c_i are non-negative. Let $G_i = (G_i, v_i, \nu_i)$ denote the plane near-cubic graph obtained from G by replacing the side of the cut S not containing v by $R_{k,i}$. Note that $n_{\tilde{G}} = \sum_i c_i n_{\tilde{G}_i}$, and since K_7 is a cone and $n_{\tilde{G}} \notin K_7$, there exists i such that $n_{\tilde{G}_i} \notin K_7$. Because B contains the cycle C_S and all edges of S are incident with vertices of C_S, we see $G_i - v_i$ is a proper minor of $G - v$, contradicting the extremality of G. \hfill \square

In Lemma 14 we argued that if $\tilde{G} = (G, v, \nu)$ is an extremal plane near-cubic graph, then $G - v$ is 2-edge-connected, and thus its face containing v is bounded by a cycle C. Let us now argue that the graph stays 2-edge-connected after removing $V(C)$ as well.

Lemma 17. Let $\tilde{G} = (G, v, \nu)$ be an extremal plane near-cubic graph and let C be the cycle bounding the face of $G - v$ containing v. The cycle C is induced, no two neighbors of v in C are adjacent, and the graph $G - (V(C) \cup \{v\})$ is 2-edge-connected and has more than one vertex.

Proof. Consider a simple closed curve c in the plane intersecting G in two edges of C, $b \leq 4$ edges incident with v, and $r \leq 1$ edges of $E(G - v) \setminus E(C)$, where each edge is intersected at most once. The curve c separates the plane into two parts; let A and B be the corresponding partition of vertices of G, where $v \in A$, and let S be the edge cut in G consisting of the edges with one end in A and the other end in B. By Lemma 15 applied to the edge cut in $G - v$ obtained from S by removing the edges incident with v, it follows that $b \leq r + 1$, and thus $|S| \leq 3 + 2r \leq 5$. By Lemma 16 we conclude that the edge cut satisfies one of the following conditions.

1. $r = 0$, $b = 1$, $|S| = 3$, and B consists of a single vertex of C, or
2. $r = 1$ and $G[B]$ is a subpath of C, or
3. $r = 1$, $b = 2$, and $G[B]$ is a 5-cycle containing exactly one vertex not in $V(C)$.

If C had a chord e, this would give a contradiction by considering a curve c (with $r = 0$) drawn next to the chord so that $e \in E(G[B])$ and $b \leq 3$; hence, C is an induced cycle. If two neighbors of v in C were adjacent, we would obtain a contradiction by considering a curve c (with $r = 0$ and $b = 2$) drawn around them. If the graph $G - (V(C) \cup \{v\})$ were not connected, we would obtain a contradiction by considering a curve c (with $r = 0$ and $b \leq 3$) chosen so that both A and B contain a vertex of $G - (V(C) \cup \{v\})$. Finally, if the graph $G - (V(C) \cup \{v\})$ were not 2-edge-connected, then we could choose c so
that \(r = 1 \), \(b \leq 3 \), and \(B \) contains a vertex of \(G - (V(C) \cup \{v\}) \). But then \(G[B] \) would be a 5-cycle containing exactly one vertex not in \(V(C) \) and consequently two adjacent vertices of \(C \) would be neighbors of \(v \), which is a contradiction.

Therefore, the graph \(G - (V(C) \cup \{v\}) \) is 2-edge-connected. Since no two neighbors of \(v \) in \(C \) are adjacent, \(G \) contains at least 7 edges between \(V(C) \) and \(V(G) \setminus (V(C) \cup \{v\}) \), and thus \(G - (V(C) \cup \{v\}) \) has more than one vertex. \(\square \)

Finally, let us apply the parts (h) and (i) of Lemma 11.

Lemma 18. If \(\tilde{G} = (G, v, \nu) \) is an extremal plane near-cubic graph, then \(G \) has at least 28 vertices.

Proof. By Lemma 14 the face of \(G - v \) containing \(v \) is bounded by a cycle \(C \). Let \(v_1, \ldots, v_7 \) be the neighbors of \(v \) in \(C \) in order. For \(i \in \{1, \ldots, 7\} \), let \(P_i \) denote the subpath of \(C \) from \(v_i \) to \(v_{i+1} \) (where \(v_8 = v_1 \)).

By Lemma 14, the cycle \(C \) is induced, no two neighbors of \(v \) in \(C \) are adjacent, and the graph \(G - (V(C) \cup \{v\}) \) is 2-edge-connected and has more than one vertex. Hence, the face of \(G - (V(C) \cup \{v\}) \) containing \(v \) is bounded by a cycle \(C' \). For a subgraph \(G' \subseteq G \) containing \(C \cup C' \), let \(X(G') \) denote the set of faces of \(G' \) separated from \(v \) by \(C' \) and let \(Y(G') \) denote the set of faces of \(G' \) separated from \(v \) by \(C \) but not by \(C' \). For \(i \in \{1, \ldots, 7\} \), we say that a face \(f \in X(G') \) is \(P_i \) if there exists a face \(f' \in Y(G') \) such that \(f' \) is incident with an edge of \(P_i \) and the boundaries of \(f \) and \(f' \) share at least one edge.

If for some \(i \in \{1, \ldots, 7\} \), some face of \(X(G) \) saw \(P_i, P_{i+2}, \) and \(P_{i+4} \) (with indices taken cyclically) then \(\tilde{G} = \gamma_4(r_2(\gamma_2(\tilde{G}_1, \tilde{G}_2)), \tilde{G}_3) \) for plane near-cubic graphs \(\tilde{G}_1, \tilde{G}_2, \) and \(\tilde{G}_3 \) with \(d(\tilde{G}_1) = d(G_2) = 6 \) and \(d(G_3) = 7 \) (see Figure 4). Lemma 13 would imply \(n_{\tilde{G}_j} \in K_{d(\tilde{G}_j)} \) for \(j \in \{1, 2, 3\} \), and by Lemma 11(h) and (i), we would have \(n_{\tilde{G}} \in K_7 \), which is a contradiction. Hence,

\[
\text{no face of } X(G) \text{ sees } P_i, P_{i+2}, \text{ and } P_{i+4}. \tag{2}
\]

Let \(b_1 \) be the number of edges of \(G \) with one end in \(C \) and the other end in \(C' \), let \(b_2 \) be the number of chords of \(C' \), let \(b_3 \) be the number of edges with one end in \(C' \) and the other end in \(V(G) \setminus V(C \cup C') \), and let \(b_4 \) be the number of edges of \(G - v - V(C \cup C') \). Note that \(b_1 \geq 7, b_3 \) is at least three times the number of components of \(G - v - V(C \cup C') \), \(|E(C)| = 7 + b_1, |E(C')| = b_1 + 2b_2 + b_3, \) and \(|E(G)| = 7 + (7 + b_1 + b_1 + (b_1 + 2b_2 + b_3) + b_2 + b_3 + b_4 = 14 + 3b_1 + 3b_2 + 2b_3 + b_4.\)

A case analysis shows that since (2) holds, one of the following conditions holds:

- \(b_1 \geq 8 \) and \(b_2 \geq 2 \), or
- \(b_1 \geq 8 \) and \(b_3 \geq 3 \), or
- \(b_3 \geq 6 \), or
- \(b_3 \geq 4 \) and \(b_4 \geq 1 \).
Hence $3b_1 + 3b_2 + 2b_3 + b_4 \geq 30$, and thus G has at least 44 edges. Consequently,
$|V(G)| \geq (2|E(G)| - 4)/3 \geq 28$.

As a consequence, this verifies Conjecture 7 for small graphs.

Corollary 19. Conjecture 7 holds for all plane near-cubic graphs with less than 30 vertices.

Proof. Let $\tilde{G} = (G, v, \nu)$ be a counterexample to Conjecture 7 and in particular $n_{\tilde{G}} \notin B'_5 = K_5$. By Lemma 12 there exists a plane near-cubic graph $G_0 = (G_0, v_0, \nu_0)$ such that $d(\tilde{G}_0) = 7$, $n_{\tilde{G}_0} \notin K_7$, and $|V(G_0)| \leq |V(\tilde{G})| - 2$. Hence, there exists an extremal plane near-cubic graph $\tilde{G}_1 = (G_1, v_1, \nu_1)$ such that $|V(G_1)| \leq |V(G_0)|$. By Lemma 18 we have $|V(G_1)| \geq 28$, and thus $|V(G)| \geq 30$.

Note that the analysis at the end of the proof of Lemma 18 can be improved. By a computer-assisted enumeration, one can show that to ensure that (2) holds, $G - v$ must contain one of 38 specific graphs as a minor; the smallest are depicted in Figure 7. Hence, every counterexample to Conjecture 7 must contain one of these 38 as a minor. The list of these 38 graphs is available at http://lidicky.name/pub/4cone/

References

Figure 7: The smallest minors.

