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Figure 8 Apatite LLE (left) and hLLE (right) result interpretation [43].

Pb10(CrO4)6Cl2 was found to not obey the general trend [44]. Note that the presence of
Cr cation in the B-site has been known to cause structural distortions in apatites.
For example, Sr10(PO4)6Cl2 has a P63/m symmetry, whereas Sr10(CrO4)6Cl2 has a dis-

torted P63 symmetry [28]. Based on the previous PCA work [44], we attribute the cause
for this exception to two bond distortion angles: (i) rotation angle ofAII-AII-AII triangular
units and the angle that bond AI-O1 makes with the c-axis. Compared to Hessian LLE, we
cannot find any clear pattern with respect to chemical bonding in the LLE result Figure 8
(left).
Figure 9 shows a zoomed-in plot of the Hessian LLE result.c Around the origin, we can

find two clusters of compounds: (i) one on the left with negative component 1 value cor-
responding to compounds that have ionic alkaline earth metal cations in the A-site and
(ii) one on the right with positive component 1 value corresponding to compounds that
have covalentA-site cations. An exception here is Ca10(CrO4)6Cl2, which is found among
the covalent A-site cluster indicating that Ca10(CrO4)6Cl2 may have a distorted symme-
try. It is important to recognize that neither PCA nor Isomap identifies Ca10(CrO4)6Cl2
as an exception. Compared to hLLE, we do not find any intriguing insights from the LLE
analysis and therefore, we do not discuss LLE results.
One needs to explore different manifold methods to fully understand high dimensional

correlations and mappings. Hence, in the following section, we shall explore the impact
of the Isomap analysis.
In Figure 10 region 1, the ionic radii of A-site elements increases along the direction

shown, with Zn2+ cation being the smallest and Ba2+ being the largest. Note that this
A-site ionic radii trend is not clearly seen in the PC2-PC3 classification map (Figure 7).
One of the key outcomes from Figure 10 is the identification that Pb10(PO4)6F2 com-
pound is an outlier. In terms of Shannon’s ionic radii scale, Pb2+ is larger than Ca2+ but
smaller than Sr2+ cation. Ideally (assuming apatites as ionic crystals), the relative position
of Pb10(PO4)6F2 should have been between Ca10(PO4)6F2 and Sr10(PO4)6F2 compounds
in the map. However, this was not the case. The physical reason behind this observation
could be attributed to the electronic structure of Pb2+ ions [47]. The theoretical elec-
tronic structure calculations indicate that in the atom-projected density of states curves,
the Pb2+ ions have active 6s2 lone-pair electrons that hybridize with oxygen 2p electrons
resulting in a strong covalent bond formation. Indeed, recent density functional theory
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Figure 9 Apatite hLLE result interpretation [43].

(DFT) calculations [48] show that the electronic band gap (at the generalized gradient
approximation (GGA) level) for Pb10(PO4)6F2 is 3.7 eV, which is approximately 2 eV
smaller compared to Ca10(PO4)6F2 (5.67 eV) and Sr10(PO4)6F2 compounds (5.35 eV).
In our dataset, the electronic structure information of A-site elements was quantified

using Pauling’s electronegativity data. While PCA captures this behavior, the dominating
effect of the electronic structure of Pb2+ ions is more transparent within themathematical
framework of non-linear Isomap analysis.

Figure 10 Apatite Isomap result interpretation (region 1) [43].
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Besides, from Figure 10, it can also be inferred that the bond distortions of Zn apatite
is different from other compounds. This trend correlates well with the non-existence of
Zn10(PO4)6F2 compounds due to the difficulty in experimental synthesis [49]. On the
other hand, the relative correlation position of Hg10(PO4)6F2 compound offer intriguing
insights. In fact, the uniqueness of Hg10(PO4)6F2 chemistry was previously detected in
a PCA-derived structure map [44], which clearly identified the composition as an out-
lier among other isostructural compounds. Guided by this original insight from PCA,
recently, Balachandran et al. [48] showed using DFT calculations that the ground state
structure of Hg10(PO4)6F2 is triclinic (space group P1̄). Although the ionic size of Hg2+

is very close to that of Ca2+, the aristotype P63/m symmetry distorts to P1̄ symmetry
in Hg10(PO4)6F2 due to the mixing of fully occupied Hg-5d10 orbitals with the empty
Hg-6s0 orbitals. This mixing is unavailable to the Ca10(PO4)6F2 compound, because it
does not have orbitals of appropriate symmetry.
In Figure 11, region 2 is highlighted where we find a clear trend of apatite com-

pounds with respect to the ionic radii of A-site elements. Similar to region 1, Pb apatites
manifest themselves as outliers in region 2. The unique electronic structure of Pb2+

cations in forming a covalent bond with oxygen 2p-states is identified as the reason for
the deviation of Pb apatites from the expected trend. The covalent bonding among Pb
compounds appear to be independent of X-site anion, when the B-site is occupied by
phosphorus cations. In Figure 11, Hg10(PO4)6Cl2 compound is found to be closely asso-
ciated with Ca10(PO4)6Br2 indicating some similarity in the bond distortions of the two
compounds. In comparing the relative correlation position of all Cl-containing apatites
(except Pb-based compounds) in region 2, we predict Hg10(PO4)6Cl2 to have a stable
apatite structure type (in sharp contrast to Hg10(PO4)6F2).
Figure 12 describes region 3 where we find clusters of apatite compounds with Cl ions

in the X-site and contain larger V, Cr, and As cations in the B-site. The ionic radius of
A-site element increases in the direction as shown in the figure, and in this case, the Pb
apatites are not outliers. The presence of large V, Cr, and As cations (compared to smaller
P cations in regions 1 and 2) in the B-site were identified as the reason for this behavior.

Figure 11 Apatite Isomap result interpretation (region 2) [43].
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Figure 12 Apatite Isomap result interpretation (region 3) [43].

Region 3 also identifies the existence of complex relationship between A-site and B-site
chemistries in Cl apatites.
Several topological observations can bemade on the data. Firstly, since low-dimensional

points obtained are different for both Isomap and PCA, it could be interpreted that the
apatite data lie on a non-linear manifold in the embedding space. However, a counter
argument can be made based on the fact that PC2-PC3 plot shows similar trends and
clustering as that in Isomap1-Isomap2. One possible reason for this happening could be
due to the existence of outliers dominating and deviating the first PCA component (PC1)
while Isomap being unaffected by this outlier; in which case, the data could actually be
lying on a linear manifold. Secondly, the different clustering phenomena observed along
different dimensionality reduction techniques might imply that the pattern/features seen
in PCA and Isomap clusters are a function of the distance preserved, while those in hLLE
and LLE is a function of the topology preserved. Hence, these chosen features represented
by these clusters happen to be preserved all along the dimensionality reduction process
from the embedded space to the lower-dimensional space.

Conclusions
In this paper, we have detailed a mathematical framework of various data dimen-
sionality reduction techniques for constructing reduced order models of complicated
datasets and discussed the key questions involved in data selection. We introduced
the basic principles behind data dimensionality reductiond. The techniques are pack-
aged into a modular, computational scalable software framework with a graphical user
interface - SETDiR. This interface helps to separate out the mathematics and computa-
tional aspects from the scientific applications, thus significantly enhancing utility of DR
techniques to the scientific community. The applicability of this framework in construct-
ing reduced order models of complicated materials dataset is illustrated with an example
dataset of apatites. SETDiR was applied to a dataset of 25 apatites being described by
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29 of its structural descriptors. The corresponding low-dimensional plots revealed pre-
viously unappreciated insights into the correlation between structural descriptors like
ionic radius, bond covalence, etc., with properties such as apatite compound forma-
bility and crystal symmetry. The plots also uncovered that the shape of the surface
on which the data lies could be non-linear. This information is crucial as it can pro-
mote the use of apatite materials as a potential host lattice for immobilizing toxic
elements.

Availability of supporting data
Information regarding the source of the apatite data can be found in [44].

Endnotes
aA tree is a graph where each pair of vertices is connected exactly with one path. A

spanning tree of a graph G(V ,E) is a sub-graph that traces all the vertices in the graph. A
minimal spanning tree (MST) of a weighted graph G(V ,E,W ) is a spanning tree with a
minimal sum of the edge weights (length of the MST) along the tree. A geodesic
minimal spanning tree (GMST) is an MST with edge weight representing geodesic
distance. Computationally, GMST is computed using Prim’s (greedy) algorithm [50].

bNormalization of a variable is forcing a limit of [−1, 1] or [0, 1] to an existing limit of
[a, b] of a variable by dividing the sequence of numbers with the maximum absolute
value of the sequence.

cHessian LLE is highly sensitive to neighborhood size and is much more sensitive to
the input estimated dimensionality. Incorrect input of estimated dimensionality implies
construction of tangent planes of incorrect dimensions which, in turn, implies
sub-optimal low-dimensional representation.

dA comprehensive catalogue of non-linear dimensionality reduction techniques along
with the mathematical prerequisites for understanding dimensionality reduction could
be found in [23].
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