A Study of Grape Skins as Support Material for Whole-Cell Immobilization during Malolactic Fermentation in Model Wine

Introduction

Malolactic fermentation (MLF): desirable for most red wine and certain types of white wine. However, MLF process is usually done by batch process in wine industry, which is not very efficient.

Oenococcus oeni: a type of MLF bacteria that converts malic acid to lactic acid to reduce the tartness and acidity in wine.

Grape skins: the outer layer of grapes. In this study, the grape skins were obtained after the crush process in winemaking.

Whole-cell immobilization: an alternative to enzyme immobilization. It is defined as “the physical confinement or localization of intact cells to a certain region of space with preservation of some desired catalytic activity”.

Objectives

• Determine a good concentration of grape skins for efficient whole-cell immobilization with Oenococcus oeni
• Study malolactic fermentation using immobilized cells in model wine

Methods and Materials

• HPLC analysis was done after 8 and 17 days MLF
• The amount of immobilized cell on grape skin was determined by weight
• Microorganism Preparation
 - Incubate for 48 hours @ 28 °C under static condition
 - Centrifuge at speed of 5000 RPM for 15 min at 4 °C
 - Collect O. oeni cells

Results

• The results for 10g/l grape skins were not determined.
• As the concentration of grape skin increased from 20 g/l to 30 g/l, the quantity of immobilized cells (per gram of grape skins) at least doubled

Conclusions and Future Work

• Grape skins, at the concentration of 30 g/l was the optimized concentration for O. oeni immobilization.
• The maximum malic acid conversion was 30.8% ± 5.1 % for O. oeni immobilization during MLF in model wine.
• Grape skins are natural products and they are often taken out after grape juice extraction in winemaking process, therefore, it is a very environmental friendly approach and it can also improve economic efficiency.
• Further study on higher concentration of grape skins can be performed to test the maximum limit of affinity.
• More detailed investigation on HPLC analysis of residual sugar, lactic and malic acids are needed for sound winemaking practices.

Acknowledgements. The authors would like to thank Dr. Sangita Singh and Midwest Grape and Wine Industry Institute for their help during the experiments.

References

Figure 1: Comparisons of O. oeni Cell Immobilization Efficiency on Different Concentrations of Grape Skins

Figure 2: Malic Acid Conversion after 8 and 17 days of MLF with 10g/l Grape Skins Compared to Controls

Figure 3: Malic Acid Conversion in Malolactic Fermentation after 17 Days in Model Wine