A Study of Grape Skins as Support Material for Whole-Cell Immobilization during Malolactic Fermentation in Model Wine

Introduction

Malolactic fermentation (MLF): desirable for most red wine and certain types of white wine. However, MLF process is usually done by batch process in wine industry, which is not very efficient.

Oenococcus oeni: a type of MLF bacteria that converts malic acid to lactic acid to reduce the tannins and acidity in wine.

Grape skins: the outer layer of grapes. In this study, the grape skins were obtained after the crush process in winemaking.

Whole-cell immobilization: an alternative to enzyme immobilization. It is defined as “the physical confinement or localization of intact cells to a certain region of space with preservation of some desired catalytic activity”.

Objectives

- Determine a good concentration of grape skins for efficient whole-cell immobilization with *Oenococcus oeni*
- Study malolactic fermentation using immobilized cells in model wine

Methods and Materials

- HPLC analysis was done after 8 and 17 days MLF
- The amount of immobilized cell on grape skin was determined by weight

Microorganism Preparation

- Incubate for 48 hours @ 28 °C under static condition
- Centrifuge at speed of 5000 RPM for 15 min at 4 °C
- Collect O. oeni cells

Methods and Materials

- **Grape Skins Preparation**
 - Grape skins obtained after crush
 - Wash with DI water and dry at 60 °C
 - Sterilize at 121 °C in autoclave machine

- **Cell Immobilization**
 - Grape skins with immobilized cells in Complex media

- **Malolactic Fermentation**
 - Take out grape skins from complex media
 - Wash grape skins with sterilized water
 - Transfer grapes into fermentation flask and incubate at 25 °C for 17 days

Results

- **The results for 10g/l grape skins were not determined.**
- As the concentration of grape skin increased from 20 g/l to 30 g/l, the quantity of immobilized cells (per gram of grape skins) at least doubled

Conclusions and Future Work

- Grape skins, at the concentration of 30 g/l were the optimized concentration for O. oeni immobilization.
- The maximum malic acid conversion was 30.8% ± 5.1% for O. oeni immobilization during MLF in model wine.
- Grape skins are natural products and they are often taken out after grape juice extraction in winemaking process, therefore, it is a very environmental friendly approach and it can also improve economic efficiency.
- Further study on higher concentration of grape skins can be performed to test the maximum limit of affinity.
- More detailed investigation on HPLC analysis of residual sugar, lactic and malic acids are needed for sound winemaking practices.

Acknowledgements

The authors would like to thank Dr. Sangita Singh and Midwest Grape and Wine Industry Institute for their help during the experiments.

References

[5] Honors Poster Session

Figure 1: Comparisons of O. oeni Cell Immobilization Efficiency on Different Concentrations of Grape Skins

Figure 2: Malic Acid Consumption after 8 and 17 days of MLF with 10g/l Grape Skins Compared with Controls

Figure 3: Malic Acid Consumption in Malolactic Fermentation after 17 Days in Model Wine

Minyi Xu, Dr. Joey Talbert