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COMPUTATIONAL COMPLEXITY OF
SOME PROBLEMS INVOLVING

CONGRUENCES ON ALGEBRAS

CLIFFORD BERGMAN AND GIORA SLUTZKI

Abstract. We prove that several problems concerning congruences on
algebras are complete for nondeterministic log-space. These problems
are: determining the congruence on a given algebra generated by a set of
pairs, and determining whether a given algebra is simple or subdirectly
irreducible. We also consider the problem of determining the smallest
fully invariant congruence on a given algebra containing a given set
of pairs. We prove that this problem is complete for nondeterministic
polynomial time.

Key words and phrases. congruence, simple algebra, nondeterministic log-space,
graph accessibility

One of the fundamental constructions in algebra is the formation of quo-
tient structures. Every quotient of an algebra A is a homomorphic image
of A, and conversely, every homomorphic image is isomorphic to a quotient
of A. For familiar sorts of algebraic structures such as groups or rings, a
quotient is often determined by a special subset, i.e., a normal subgroup or
an ideal. But for an arbitrary algebraic structure, it is necessary to describe
quotient algebras by means of a more general device called a congruence
relation.

A congruence relation on an algebra A is an equivalence relation closed
under the operations of A (see Definition 1.1). The set of congruences on
an algebra forms a complete lattice in which the meet operation coincides
with intersection. Thus, given a set θ of ordered pairs, we can talk about
the smallest congruence containing θ, denoted CgA(θ).

In this paper we consider the complexity of the problem of determining
CgA(θ), where A is a finite algebra of finite similarity type. Specifically, we
define Gen-Con to be the following problem:

Gen-Con =
{
〈A, θ, a, b〉 : a, b ∈ A, θ ⊆ A2 and (a, b) ∈ CgA(θ)

}
.

In this context, the ‘problem’ is that of determining whether a given quadru-
ple 〈A, θ, a, b〉 is or is not a member of the set Gen-Con. In Theorem 3.5
we prove that Gen-Con is complete for nondeterministic log-space (denoted
NL).

2000 Mathematics Subject Classification. 08A30, 68Q17, 08A35, 05C40.
An abbreviated version of this paper appeared in LICS 2000.
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Related to the problem of generating congruences are two others of inter-
est to algebraists. An algebra is called simple if it has exactly two congru-
ences, and is subdirectly irreducible if it has a smallest nontrivial congruence.
Subdirectly irreducible algebras, in particular, are critical to the study of
equational classes of algebras. We define

Simp = {A : A is a simple algebra }
SI = {A : A is a subdirectly irreducible algebra } .

In Theorem 3.5 we prove that both of these problems are complete for NL.
We prove that all three problems lie in NL by describing nondeterminis-

tic algorithms that run in log-space (see Theorems 2.3 and 2.4). To prove
NL-hardness, we use reductions from some well-known problems in the the-
ory of directed graphs (Lemma 3.4). The very naturalness of the reductions
suggests a close relationship between path connectedness (the graph prob-
lem) and that of generating congruences. We are able to apply the same
techniques to a problem of Bélohlávek and Chajda [1], to show that testing
a subset of an algebra to determine whether it is a class of some congruence
can be performed in nondeterministic log-space, see Theorem 2.5.

In the final section of the paper we consider an analogous problem for
fully invariant congruences, that is, congruences that are preserved by all
endomorphisms of the algebra. We show that the problem of determining
the fully invariant congruence generated by a set of pairs is NP-complete.

Congruence relations play a basic role in several areas of computer science.
So basic in fact, that they are often taken for granted and not mentioned
explicitly. For example, an implementation of an abstract data type is usu-
ally represented by an algebra. (In practice, the algebras used in the theory
of data types are multi-sorted, but that causes no theoretical complica-
tions.) Typically, this algebra is required to be minimal, i.e., have no proper
subuniverses. Under these assumptions, the most natural way to produce
additional implementations of the same abstract data type is by forming a
quotient algebra of the original. In particular, if T represents the “ground
term algebra” (see [24]), then every minimal algebra can be obtained as a
quotient in this way.

If A is an algebra of an appropriate similarity type (“signature”, in the
terminology of the field) and if E is an equationally defined specification,
then A has a largest quotient structure, A/ψ, satisfying E. It is easy to
show that ψ will be a fully invariant congruence of A in this case. Again, by
taking A = T to be the ground term algebra, A/ψ will represent the initial
semantics of the data type.

Fully invariant congruences are useful in the study of equational theories
of algebras. For example, if A is an n-generated free algebra in a variety
V, then there is a one-to-one correspondence between the fully invariant
congruences of A and the subclasses of V defined by sets of identities limited
to n variables. More generally, for any algebra A and variety V, the reflection
of A into V (see [17, page 89]) is of the form A/θ, where θ is a fully invariant
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congruence of A. See [23] for a survey of results and applications of fully
invariant congruences.

Fully invariant congruences also appear in the study of term rewriting
systems. A set of rewrite rules can be considered to be a binary relation
θ ⊆ T 2, where T is the set of all terms in some fixed similarity type over
a set X of variables. Then the set of all pairs of terms (t, t′) that have a
common reduct is equal to the fully invariant congruence generated by θ.

A congruence relation on an algebra A can be considered to be a set
of ordered pairs that is simultaneously an equivalence relation on A and a
subuniverse of A2 = A × A. In analogy with Gen-Con, it is natural to
define the problem

Gen-SubAlg =
{
〈A, X, a〉 : X ⊆ A, a ∈ A and a lies in

the subuniverse of A generated by X
}
.

It is easy to find a reduction of Gen-Con to Gen-SubAlg, see for example,
[3, Theorem 5.5]. Thus Gen-Con can be no harder than Gen-SubAlg.
However, in [14] Jones and Laaser proved that Gen-SubAlg is complete
for P (the class of problems solvable in polynomial time). It is known that
NL is contained in the class of problems solvable in polynomial time, and
it is generally believed that the inclusion is proper. Thus Gen-SubAlg is
apparently strictly harder than Gen-Con.

Since it lies in NL, there is an algorithm for Gen-Con that runs in
polynomial time. Our Algorithm 1 is, of course, nondeterministic. But
even if it were converted to a deterministic algorithm in the natural way
(i.e., by an exhaustive search for a successful computation path), it would
not be particularly efficient, running in time proportional to the square,
or perhaps even the cube of s, the size of the input. This is because the
algorithm repeatedly recomputes numerous quantities, rather than saving
them (since the space required to save the information exceeds O(log s)
bits). By contrast, in a recent note [7], R. Freese exhibited an algorithm for
Gen-Con that runs in linear time. However, Freese’s algorithm uses linear,
rather than logarithmic, space. In the 1980s, Demel, Demlová and Koubek
[4, 5] presented linear-time algorithms for many of the problems discussed
in this paper.

1. Background Material

We provide here only the barest summary of the notions we need from
universal algebra and complexity theory. For more details on universal al-
gebra, the reader should consult any of [3, 9, 19], and for computational
complexity, [11, 20, 22]. Also, the first two sections of our paper [2] contain
a more extensive discussion of both of these topics.

For a nonnegative integer n, an n-ary operation on a set A is a function
f : An → A. The integer n is called the rank of f . An algebra is a pair
A = 〈A,F 〉, in which A is a nonempty set, and F is a set of operations on
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A. The set A is called the universe and F the set of basic operations of the
algebra A. If F is finite, the algebra is said to be of finite similarity type.
A subuniverse of A is a subset closed under the basic operations.
Definition 1.1. Let A = 〈A,F 〉 be an algebra. A congruence on A is a set
ψ ⊆ A×A such that

• ψ is an equivalence relation on A, and
•
(
∀f ∈ F

)(
∀(a1, b1), . . . , (an, bn) ∈ ψ

)
(f(a1, . . . , an), f(b1, . . . , bn)) ∈ ψ.

Here, the rank of f is n.
The set of congruences on A is denoted Con(A). The smallest element

of this set is the identity relation δA = { (x, x) : x ∈ A }, while the largest
is the relation A2. It is easy to see that Con(A) is closed under arbitrary
nonempty intersections. Given a set θ ⊆ A×A we define

CgA(θ) =
⋂
{ψ ∈ Con(A) : θ ⊆ ψ } ,

called the congruence on A generated by θ.
A nontrivial algebra A is called simple if Con(A) = {δA, A2}, while A is

called subdirectly irreducible if there is a congruence µ 6= δA such that for all
ψ ∈ Con(A)− {δA}, ψ ⊇ µ. The congruence µ is called the monolith of A.

The formal definitions of complexity theory are usually given in terms of
languages, i.e., sets of finite strings over some fixed alphabet. Associated
with each language L is a decision problem: Given a string x, decide whether
x ∈ L. The amount of time or space required by a Turing machine to perform
this computation generally depends on the length of the input string x.
The language L is said to be computable in polynomial time if there is
a polynomial p such that some deterministic Turing machine can decide
whether an input string x of length s lies in L in time O

(
p(s)

)
. The set of

all languages computable in polynomial time is denoted P.
The set NL consists of those languages computable by a nondeterminis-

tic Turing machine whose space requirements are in O(log s), for an input
of length s. We say that such a problem is computable in nondetermin-
istic log-space. Similarly, NP denotes the set of languages computable in
nondeterministic polynomial time.

Of course in practice, we prefer to couch our discussion in terms of “real”
problems, rather than languages. But we always tacitly assume that there is
some reasonable encoding of the instances of the problem into finite strings.
In this way, we can identify our mathematical problems with formal lan-
guages, and we describe our problems as certain subsets of the set of all
appropriate instances.

Given two problems A and B, we say that A is log-space reducible to B

(A ≤log B) if there is a function f , computable in (deterministic) log-space,
such that for every instance x of A, x ∈ A ⇐⇒ f(x) ∈ B. B is said to be
hard for NL if every member of NL is log-space reducible to B, and B is
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complete for NL if it is both hard for NL and a member of NL. It is not
hard to see that ‘≤log’ is reflexive and transitive. Thus if B is known to be
NL-complete and if B ≤log A ∈ NL, then A is NL-complete as well.

It is not hard to show that NL ⊆ P ⊆ NP. It is generally believed,
although still unproved, that each of these inclusions is proper. It follows
from this belief that a proof that a problem B is complete for one of these
classes is strong evidence that B does not belong to any of the preceding
classes in this list of inclusions.

We make the following assumptions regarding the format of an input
instance to the problems Gen-Con, Simp and SI. All algebras are finite and
of finite similarity type. The underlying set of an algebra can be assumed
to be {0, 1, . . . , n− 1} for some positive integer n, and, in fact, this set can
be represented in the input by its cardinality. This requires only logn bits
of storage. Each operation of an algebra can be represented as a table of
values. Thus, a k-ary operation will be represented as a k-dimensional array,
with both the indices and entries coming from {0, . . . , n−1}. An array such
as this occupies nk · log n bits in the input stream.

Let A = 〈A,F 〉 be an algebra of cardinality n. Suppose that q = |F | and
the maximum rank of any member of F is r. Then, as an input instance
to either Simp or SI, the size of A is at least max(nr, nq). Similarly, let
s denote the size of a typical instance, 〈A, θ, a, b〉, of Gen-Con. This is
bounded below by max(nr, |θ| , nq). We can certainly conclude that

(1) log s ≥ max(r log n, log q).

2. Membership in NL

In order to prove that Gen-Con lies in NL, we need a slight variation
on the classical theorem, due to Maltsev [18], describing the congruence on
an algebra A generated by a set of pairs. The only difference between our
formulation and that found in most texts is that we replace the monoid of
all unary polynomial operations on A with a smaller and more manageable
subset that we now describe. The proofs of Lemma 2.1 and Theorem 2.2
are identical to those of Theorems 4.18 and 4.19 in [19]. A treatment very
similar to ours can be found in Section 2.1.2 of [24].

Let A be a set and f an n-ary operation on A, for some n ≥ 1. We define

f(A) =
{
f(a1, . . . , ai−1, x, ai+1, . . . , an) : 1 ≤ i ≤ n, a1, . . . , an ∈ A

}
.

Thus, f(A) is the set of all unary operations on A obtained by substituting
elements of A for all but one of the variables in f . The members of f(A) are
called elementary translations. We write C(A) for the set of unary constant
operations on A. Finally, if F is any set of operations on A, we let F(A) =
C(A) ∪

⋃{
f(A) : f ∈ F

}
.

Lemma 2.1. Let A be a set and let F be a set of operations on A. Then
Con〈A,F 〉 = Con〈A,F(A)〉.
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Algorithm 1 Gen-Con(A, θ, a, b)

(1) z ← a, n← |A|
(2) for i = 0 to n− 1 do
(3) Choose z′ ∈ A
(4) Choose (u, v) ∈ θ
(5) if {u, v} = {z, z′} then goto 11
(6) for j = 1 to n2 − 1 do
(7) Choose g ∈ F(A)

(8) u← g(u), v ← g(v)
(9) if {u, v} = {z, z′} then goto 11

od
(10) Reject
(11) if z′ = b then Accept
(12) z ← z′

od
(13) Reject

For a set S of unary operations on A, let S∗ denote the submonoid of the
monoid of all self-maps of A generated by S. In particular, the identity map
is an element of S∗.
Theorem 2.2. Let A = 〈A,F 〉 be a finite algebra, θ ⊆ A×A and a, b ∈ A.
Then (a, b) ∈ CgA(θ) if and only if there are elements z0, z1, . . . , zm ∈ A,
pairs (c0, d0), . . . , (cm−1, dm−1) ∈ θ and operations f0, . . . , fm−1 ∈ (F(A))∗

such that

(2)
a = z0, b = zm, and

{zi, zi+1} = {fi(ci), fi(di)} for i = 0, 1, . . . ,m− 1.

Notice that in the above theorem, we can assume that m < |A|. For
if not, then there are indices j < k such that zj = zk. In that case, the
sequence z0, z1, . . . , zj , zk+1, . . . , zm (along with the associated sequence of
(ci, di) and fi) serve as witnesses to (a, b) ∈ CgA(θ).

It is a simple matter to turn the characterization in Theorem 2.2 into a
procedure for computing Gen-Con.
Theorem 2.3. Gen-Con ∈ NL.

Proof. Consider the nondeterministic algorithm labeled Algorithm 1. Essen-
tially this procedure takes a guess at the sequences z0, z1, . . . , zn; (c0, d0), . . . ,
(cn−1, dn−1); and f0, . . . , fn−1 in Theorem 2.2. If it finds such sequences, the
algorithm accepts the input 〈A, θ, a, b〉. In each trip through the main loop
(starting at statement 2), z contains the value of zi. We nondeterministically
choose values z′ to be zi+1 and u, v to be ci, di. In steps 5–9, we choose an
operation f ∈ F ∗(A) and test whether {z, z′} = {f(ci), f(di)}. If this equality
holds, we set (at step 12) zi+1 to be the value of z′ and continue. If the
equality fails, we reject the instance.
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The computation of the operation f is accomplished by nondeterministi-
cally choosing a series of operations g ∈ F(A) whose composite is to be f . We
don’t keep track of all of these g’s. Rather, we follow the images of ci and
di under these maps by recording them in the variables u and v. The length
of the composition needed to obtain f can be bounded by n2, since that is
how many pairs (u, v) are possible. (And there is no need to encounter a
pair more than once.)

It is also not necessary to construct the entire set F(A) in line 7. The
set F = {g0, . . . , gq−1} is part of the input. For 0 ≤ i < n, let gq+i(x)
be the constant operation with value i. To choose g, pick integers k and
` with 0 ≤ k < q + n and 1 ≤ ` ≤ rank(gk), and members a1, . . . , ar
of A. The data 〈k, `, a1, . . . , ar〉 is sufficient to determine the operation
g(x) = gk(a1, . . . , a`−1, x, a`+1, . . . ).

The total auxiliary memory required by Algorithm 1 is the space for
storing the variables: z, z′, i, j, n, u, v, k, `, a1, . . . , ar. Each of these holds an
integer in the range [0, n), hence requires only log n bits of storage, except
for k and ` which require log(q+n) and log r bits respectively. Thus the total
space requirement is on the order of (r+7) log n+log(q+n)+log r ∈ O(log s),
where s is the size of the instance, by the inequality (1). �

Theorem 2.3 can also be obtained from Immerman’s theorem [12]. Im-
merman showed that every language definable in FO(TC) (first-order logic
with a transitive closure operator) lies in NL. It follows from Theorem 2.2
that Gen-Con can be so defined. Similar remarks apply to the following
theorem.

Theorem 2.4. Both Simp and SI lie in NL.

Proof. Observe that a nontrivial algebra A is simple if and only if

(3) (∀a 6= b)(∀c 6= d) (a, b) ∈ CgA(c, d).

For each a, b, c, d, the truth of (a, b) ∈ CgA(c, d) can be determined with a
single call to Gen-Con. The computation required to verify formula (3) can
be accomplished with four nested loops. It is important to observe that the
space required for the call to Gen-Con can be reused on each trip through
the loop. Thus, in addition to the space required by one call to Gen-Con,
we only need to allocate space for the four loop counters, which run from 0
to |A| − 1. Thus Simp ∈ NL.

Similarly, A is subdirectly irreducible if and only if

(4) (∃a 6= b)(∀c 6= d) (a, b) ∈ CgA(c, d).

Using an argument similar to that used for simplicity, we see that SI ∈ NL.
�
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We conclude this section with a discussion of a problem first considered
in Bélohlávek and Chajda [1]. Let us define

Cong-Class =
{
〈A, C〉 : A an algebra and C a congruence class

of some congruence on A
}
.

If ψ is a congruence of an algebra A, then a congruence class of ψ is a set
of the form a/ψ = {x ∈ A : (a, x) ∈ ψ } for some fixed element a of A.

Bélohlávek and Chajda show that when restricted to those algebras that
generate a congruence-regular variety, the problem Cong-Class lies in P.
However, using the techniques we have developed in this section, we are able
to show that not only can the congruence-regularity assumption be dropped,
but Cong-Class actually lies in NL, a (presumably proper) subclass of P.
Theorem 2.5. Cong-Class ∈ NL.

Proof. Let A be an algebra, and C ⊆ A. Since the empty set is never a
congruence class, we assume that C is nonempty. Define ψ = CgA(C2).
It is easy to see that C is a class of some congruence if and only if C is a
class of the congruence ψ. Fix an element c ∈ C. By the definition of ψ,
we clearly have C ⊆ c/ψ, thus we need only check the reverse inclusion. In
other words, we wish to check the condition

(∀x ∈ A) 〈A, C2, x, c〉 ∈ Gen-Con =⇒ x ∈ C.
This condition can be checked with a simple loop. Strictly speaking, we can
not call Gen-Con as a subroutine, since that would require enough space
to hold the structure 〈A, C2, x, c〉. Instead, the code from Algorithm 1 must
be inserted directly into the loop with references to θ replaced by C. Thus
Cong-Class lies in NL. �

Unlike our primary problems, Gen-Con, SI and Simp, we have been
unable to determine whether Cong-Class is complete for NL. We leave
that as an open problem.
Problem. Is Cong-Class complete for NL?

3. NL-Hardness of the problems

We now turn to the problem of determining a lower bound for each of
these problems. Specifically, we wish to show that each of the three problems
discussed in Theorems 2.3 and 2.4 is NL-hard. For this we will use some
facts from the complexity theory of finite graphs.

A directed graph (digraph) is a structure 〈G, ε〉, in which G is a nonempty,
finite set (the vertices) and ε ⊆ G×G (the edges).

Let G = 〈G, ε〉 be a digraph and a, b ∈ G. A path from a to b of length n
is a sequence of vertices a = v0, v1, . . . , vn = b such that for every 0 ≤ i < n,
(vi, vi+1) ∈ ε. For every vertex a, we agree that there is a path from a to a
(of length 0). We define

R(a) = { b ∈ G : there is a path from a to b } .
8



One of the best-known problems in complexity theory is the Graph Ac-
cessibility Problem:

GAP =
{
〈G, a, b〉 : G a digraph, a, b ∈ G and b ∈ R(a)

}
.

In other words, GAP is the problem of determining whether there is a path
from a to b in a given digraph. This problem was shown to be complete
for NL in [13], although the result is also implicit in [21]. It is used as the
motivating problem for nondeterministic log-space in [20], where it is called
REACHABILITY.

The digraph G is called strongly connected if for every a ∈ G, R(a) = G.
In other words, for every a and b, there is a directed path from a to b.
The vertex b will be called an attractor if, for every vertex a, b ∈ R(a).
Associated with these notions, we introduce two more problems.

Str-Con = {G : G is strongly connected }
Attract = {G : G has an attractor } .

Str-Con was proved to be NL-complete by Laaser, see [13]. As far as we
know, the problem Attract is new.

Theorem 3.1. Each of the problems GAP, Str-Con and Attract is
complete for NL.

Proof. We mentioned above that both GAP and Str-Con are complete for
NL. Let G be a digraph. Observe that

G ∈ Str-Con ⇐⇒ (∀b)(∀a) 〈G, a, b〉 ∈ GAP

G ∈ Attract ⇐⇒ (∃b)(∀a) 〈G, a, b〉 ∈ GAP.
(5)

In a manner similar to that used for SI in the proof of Theorem 2.4, an
algorithm for Attract (and also for Str-Con) can be based on two nested
loops, with a call to GAP inside the innermost loop. The space used for
the GAP computation can be reused. Thus Attract lies in NL.

To show that Attract is NL-hard, we shall give a log-space reduction of
GAP to Attract. Let 〈G, a, b〉 be an instance of GAP, where G = 〈G, ε〉.
Let H = G ∪ {c} (where c /∈ G) and β = ε ∪ { (v, a) : v ∈ G } ∪ {(b, c)}. Let
H = 〈H,β〉. We claim that 〈G, a, b〉 ∈ GAP if and only if H ∈ Attract,
with c as the attractor.

To see this, suppose first that there is a path p from a to b in G. Then
for any vertex v of G, the sequence v,p, c is a path in H from v to c. Thus
c is an attractor. Conversely, if c is an attractor in H, then there is a path
(in H) from a to c. But such a path must include b, and (since there is no
exit from c) only the last vertex in the path is equal to c. Thus, there is a
path in G from a to b, so that 〈G, a, b〉 ∈ GAP.

This reduction is clearly computable in log-space, since the only auxil-
iary storage that is needed is for several counters. Thus Attract is NL-
complete. �
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Figure 1. Part of an algebra A(G)

The reader has surely noticed the structural similarity between the con-
ditions in (5) and those in equivalences (3) and (4):

A ∈ Simp ⇐⇒ (∀a 6= b)(∀c 6= d) (a, b) ∈ CgA(c, d)

G ∈ Str-Con ⇐⇒ (∀b) (∀a) 〈G, a, b〉 ∈ GAP

A ∈ SI ⇐⇒ (∃a 6= b)(∀c 6= d) (a, b) ∈ CgA(c, d)

G ∈ Attract ⇐⇒ (∃b) (∀a) 〈G, a, b〉 ∈ GAP.

We shall now exhibit reductions between the graph problems of Theorem 3.1
and the algebra problems discussed in Theorem 2.4. For this we use the
following construction.

Let G = 〈G, ε〉 be a digraph. Fix an element ? /∈ G and let G? = G∪{?}.
Define a new graph G? = 〈G?, ε〉. (Thus ? is an isolated point of G?.)
For v ∈ G? define N [v] = {v} ∪ {w : (v, w) ∈ ε } (the closed neighborhood
of v), and let k = maxv∈G

∣∣N [v]
∣∣. For each 1 ≤ i ≤ k, choose a function

fi : G? → G? in such a way that for all v ∈ G?, { fi(v) : 1 ≤ i ≤ k } = N [v].
In other words, for each edge from v to w there should be some i with
fi(v) = w. Note that for all i we have fi(?) = ?. Also, for each v ∈ G we
define the operation gv on G? by

gv(w) =

{
? if w = v;
w otherwise.

Finally, we define an algebra

A(G) =
〈
G?, 〈fi〉1≤i≤k, 〈gv〉v∈G

〉
.

The construction of A(G) is illustrated schematically in Figure 1.
Let us make two observations about the algebra A(G). First, for any

element a of G, the subuniverse generated by a is R(a)∪{?}. Second, A(G)
is a unary algebra, that is, each of its basic operations is of rank 1. A useful
fact about unary algebras is the following lemma. The proof is an easy
verification.
Lemma 3.2. Let B be a unary algebra and S a subuniverse of B. Then the
binary relation ψS = { (x, y) : x, y ∈ S or x = y } is a congruence on B.
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Note that the congruence ψS has exactly one nontrivial congruence class,
namely S itself. For the next two lemmas, we omit the superscript ‘A(G)’
in the notation Cg(x, y).
Lemma 3.3. (1) Let a and b be vertices of G. Then (b, ?) ∈ Cg(a, ?) if

and only if b ∈ R(a).
(2) If c and d are distinct elements of G?, then Cg(c, ?) ⊆ Cg(c, d).

Proof. Let S = R(a) ∪ {?} be the subalgebra of A(G) generated by a.
Since a, ? ∈ S, it follows from Lemma 3.2 that Cg(a, ?) ⊆ ψS . Thus, if
b ≡ ? (mod Cg(a, ?)) then, since b 6= ?, we get b ∈ S, in fact, b ∈ R(a).
Conversely, if b ∈ R(a), then there is a sequence of indices i1, i2, . . . , im
such that b = fi1 ◦ fi2 ◦ · · · ◦ fim(a). Since ? is fixed by each fi, we obtain
(b, ?) ∈ Cg(a, ?).

For the second claim, if d = ? then the inclusion is trivial. So suppose
d 6= ?. Since c 6= d 6= ?, working modulo Cg(c, d) we have c = gd(c) ≡
gd(d) = ?. Since Cg(c, ?) is the smallest congruence identifying c with ?, we
get Cg(c, ?) ⊆ Cg(c, d). �

The relationship between the algebraic problems and the graph problems
is given in the following lemma.
Lemma 3.4. For any digraph G and a, b ∈ G we have

〈G, a, b〉 ∈ GAP ⇐⇒
〈
A(G), {(a, ?)}, b, ?

〉
∈ Gen-Con;

G ∈ Str-Con ⇐⇒ A(G) ∈ Simp;

G ∈ Attract ⇐⇒ A(G) ∈ SI.

Proof. The first equivalence follows immediately from Lemma 3.3(1). Sup-
pose that G is strongly connected. To show A(G) simple, pick a pair c, d
of distinct elements from G?. We wish to show that Cg(c, d) is the uni-
versal congruence. Without loss of generality, assume that c 6= ?. By
Lemma 3.3(2), we have (c, ?) ∈ Cg(c, d). By assumption R(c) = G, so by
Lemma 3.3(1), the congruence class of c modulo Cg(c, ?) contains all of G?.
Thus Cg(c, ?), hence also Cg(c, d) is universal.

Conversely, suppose that A(G) is simple. Pick vertices a, b in G. Since
Cg(a, ?) is the universal congruence, we apply Lemma 3.3(1) again to obtain
b ∈ R(a).

Now we address the third equivalence. Suppose that b is an attractor of
G. We wish to show that Cg(b, ?) is the smallest nontrivial congruence (the
monolith) of A(G). Choose any pair c, d of distinct elements. Assume that
c 6= ?. By assumption, b ∈ R(c), so again using Lemma 3.3, Cg(b, ?) ⊆
Cg(c, ?) ⊆ Cg(c, d).

For the converse, suppose that Cg(c, d) is the monolith of A(G), with
? 6= c 6= d. By Lemma 3.3, Cg(c, ?) ⊆ Cg(c, d). Since c 6= ?, Cg(c, ?) is
not the identity congruence, hence by the minimality of Cg(c, d), we get
Cg(c, ?) = Cg(c, d). But then, for any a ∈ G, Cg(c, ?) ⊆ Cg(a, ?), hence by
Lemma 3.3(1), c ∈ R(a). In other words, c is an attractor of G. �
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Finally, we can combine Lemma 3.4 and Theorem 3.1 to obtain our main
theorem.
Theorem 3.5. Each of the problems Gen-Con, Simp and SI is complete
for NL.

Remarks:
(1) From Lemma 3.4 we see that Gen-Con remains complete for NL

if we restrict to instances 〈A, θ, a, b〉 in which A is a unary algebra
and |θ| = 1.

(2) It is natural to wonder about the complexity of recognizing congru-
ences on an algebra. In other words, given an algebra A and a binary
relation θ on A, determine whether θ is a congruence on A. It is not
hard to see that this can be done in (deterministic) log-space.

First, one can verify that θ is an equivalence relation using three
nested loops, each running through the elements of A. For example,
if a and b are two of the loop counters, then we can test the symmetry
of θ by verifying that whenever (a, b) is in θ, so is (b, a).

To test the second condition of Definition 1.1, use two sets of vari-
ables a1, . . . , ar and b1, . . . , br. (Here r denotes the maximum rank of
any of the basic operations.) For each basic operation f , have each of
(a1, . . . , ar) and (b1, . . . , br) traverse the entire set Ar. Whenever we
have (ai, bi) ∈ θ for all i ≤ k, verify that

(
f(a1, . . . , ak), f(b1, . . . , bk)

)
∈

θ. This requires 2r counters, each using logn bits. Note that an in-
put instance to this problem is almost identical to that of Gen-Con,
so we conclude from inequality (1) that our space requirements are
bounded by the logarithm of the size of the input.

(3) In the construction of A(G), the sequence 〈gv〉v∈G of unary opera-
tions can be replaced with a single binary operation given by

x · y =

{
? if x = y

y otherwise.

This does not result in any space-saving when all operations are
given via tables, but might be very efficient if the operations are
allowed to be presented by other means, such as Boolean circuits.

(4) GAP is a problem for directed graphs. There is an analogous prob-
lem, called UGAP, for undirected graphs. It follows at once that
UGAP ∈ NL. However, it is an open question whether UGAP is
complete for NL. The complexity class SL (symmetric log-space) is
defined in such a way that UGAP is complete for SL. See Lewis and
Papadimitriou[16] for details. The completeness of UGAP for NL
is equivalent to the assertion that SL = NL.

A set A can be viewed as an algebra in which the set of basic
operations is empty. In that case, for any subset θ of A2, CgA(θ)
is nothing but the smallest equivalence relation on A containing θ.
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Now it is easy to see that (a, b) ∈ CgA(θ) if and only if a and b lie in
the same connected component of the undirected graph 〈A, θ̄〉, where
θ̄ = θ ∪ { (y, x) : (x, y) ∈ θ }. In other words, UGAP coincides with
the special case of Gen-Con in which the “algebra” is constrained
to have no basic operations. In our experience, this special case is
of lesser complexity than is the general case. This suggests that one
ought to try to prove that Gen-Con /∈ SL, thereby settling the
question of whether SL and NL are distinct.

Recall the problem Cong-Class mentioned at the end of Sec-
tion 2. We proved in Theorem 2.5 that Cong-Class lies in NL.
Since we have been unable to prove that this problem is complete
for NL, we are led to wonder whether Cong-Class might lie in an
interesting proper subclass. SL seems to be a natural candidate. As
a companion to Problem 2, we ask

Does Cong-Class lie in SL?

4. Fully invariant congruences

An endomorphism of an algebra A = 〈A,F 〉 is a homomorphism from A
to itself, in other words, a function h : A → A such that for all f ∈ F and
a1, . . . , am ∈ A, h

(
f(a1, . . . , am)

)
= f

(
h(a1), . . . , h(am)

)
. The collection of

all endomorphisms of A is denoted End(A).
A congruence ψ on A is called fully invariant if for all (x, y) ∈ ψ and

all h ∈ End(A),
(
h(x), h(y)

)
∈ ψ. We denote by Confi(A) the set of fully

invariant congruences of A. It is immediate from the definition that

(6) Confi(〈A,F 〉) = Con(〈A, F ∪ End(A)〉).

This equation has several consequences. First, both δA and A2 are fully
invariant congruences on A. Second, for any θ ⊆ A2, there is a smallest
fully invariant congruence on A containing θ. We shall write CgA

fi (θ) for
this congruence. Finally, Theorem 2.2 can be applied to compute CgA

fi (θ)
(with F replaced by F ∪ End(A)).

Parallel to our problem Gen-Con, we define

Gen-Confi =
{
〈A, θ, a, b〉 : a, b ∈ A, θ ⊆ A2 and (a, b) ∈ CgA

fi (θ)
}
.

With minor modifications, Algorithm 1 can be used to compute Gen-Confi.
In light of equation (6), if Algorithm 1 is used to compute Gen-Confi, then
in step 7, g must be chosen from (F∪End(A))(A) rather than from F(A). But
note that (F ∪ End(A))(A) = F(A) ∪ End(A). Thus, we provide a modified
algorithm, Algorithm 2, in which this step is replaced with the sequence
7a–7e. The idea behind this sequence of steps is as follows. We first toss a
coin. If the coin comes up ‘heads’, we choose g ∈ F(A) as before. However,
on ‘tails’, we guess an arbitrary function g : A→ A and then check to see if
g is an endomorphism of A. If it is, we proceed to step 8. If not, we reject
this instance.
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Algorithm 2 Gen-Confi(A, θ, a, b)

(1) z ← a, n← |A|
(2) for i = 0 to n− 1 do
(3) Choose z′ ∈ A
(4) Choose (u, v) ∈ θ
(5) if {u, v} = {z, z′} then goto 11
(6) for j = 1 to n2 − 1 do
7a. Toss a coin
7b. If heads then choose g ∈ F(A)

7c. else do
7d. Choose g : A→ A
7e. If g /∈ End(A) then Reject

od
(8) u← g(u), v ← g(v)
(9) if {u, v} = {z, z′} then goto 11

od
(10) Reject
(11) if z′ = b then Accept
(12) z ← z′

od
(13) Reject

Unlike the original algorithm, this modified version can not be executed
in log-space. This is because we require enough space to hold the entire
function g whenever the coin comes up ‘tails’. Since a function from A to A
is a list of n integers in the range {0 . . . n− 1}, the space requirement for g
is n log n. In general, this will not be bounded by the logarithm of the size
of the input (see inequality (1)).

However, our modified algorithm does run in (nondeterministic) polyno-
mial time. The verification that a function g is an endomorphism requires
one pass through each of the tables for the basic operations of the algebra.
Since the algorithm reaches step 7 at most n3 times, the total running time
will be bounded by a polynomial in the size of the input.

As an alternative, one can prove that Gen-Confi ∈ NP by observing
that in light of Theorem 2.2, Gen-Confi can be defined by a second-order,
existential sentence. From Fagin’s theorem [6] it follows that any language
defined in this way lies in NP.

We now wish to prove that Gen-Confi is hard for NP. We will do this
by reducing the well-known problem Clique to Gen-Confi. For a positive
integer n, let Kn denote the digraph with vertex set {1, 2, . . . , n} and (di-
rected) edges { (x, y) : x 6= y }. If G is a digraph, then a clique of G is a
subgraph isomorphic to some Kn. We call G loopless if it has no edges of
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the form (x, x). We define

Clique =
{

(G, n) : G a loopless digraph, n ≥ 1,

and G has a clique of size n
}
.

The problem Clique is known to be NP-complete, see [8, p. 194].
Let G = 〈G, ε〉 and H = 〈H, τ〉 be digraphs. A homomorphism from H

to G is a function t : H → G such that (x, y) ∈ τ implies (t(x), t(y)) ∈ ε.
Note that a loopless graph G has a clique of size n if and only if there is a
homomorphism from Kn to G.

In [10], Hedrĺın and Pultr described an elegant transformation from di-
graphs to unary algebras that has been used several times [2, 15] to reduce
problems involving graphs to similar problems involving algebraic struc-
tures. Given a digraph G = 〈G, ε〉, we shall define an algebra Ĝ as follows.
The universe of Ĝ is the set Ĝ = G ∪ ε ∪ {u, v} where u and v are points
not appearing in either G or ε. Ĝ = 〈Ĝ, f0, f1〉 where f0 and f1 are unary
operations defined by

∀x ∈ G f0(x) = u, f1(x) = v;

∀(x, y) ∈ ε f0((x, y)) = x, f1((x, y)) = y;

f0(u) = v, f1(u) = u,

f0(v) = v, f1(v) = u.

Furthermore, let t : H → G be a digraph homomorphism. We define a
function t̂ : Ĥ → Ĝ given by

∀x ∈ H t̂(x) = t(x);

∀(x, y) ∈ τ t̂((x, y)) = (t(x), t(y));

t̂(uH) = uG, t̂(vH) = vG.

Theorem 4.1 (Hedrĺın and Pultr, [10]). The mappings G 7→ Ĝ and t 7→ t̂
constitute a full and faithful functor from the category of digraphs to that
of algebras with two unary operations. In other words, for each pair H,
G of digraphs, and each digraph homomorphism t, the function t̂ : Ĥ →
Ĝ is a homomorphism and furthermore, the mapping t 7→ t̂ is a bijection
between the homomorphisms from H to G and the homomorphisms between
Ĥ and Ĝ.

It follows that any homomorphism from Ĥ to Ĝ must preserve u and v,
and map vertices to vertices and edges to edges.
Lemma 4.2. Clique ≤log Gen-Confi.

Proof. Let 〈G, n〉 be an instance of Clique, with G = 〈G, ε〉. Fix a new
vertex a and define G′ =

〈
G∪{a}, ε∪ ({a}×G)∪ (G×{a})

〉
. That is, there

is an edge from a to each vertex of G as well as an edge in the opposite
direction. Let K = Kn+1 and let G′ + K denote the disjoint union of the
graphs G′ and K.
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Now define G′′ to be G′+K and set A = Ĝ′′ (see Theorem 4.1). Pick two
distinct vertices ā and b̄ from K, and let ē be the edge from ā to b̄. Finally,
let θ = {(ā, ē)} and ψ = CgA

fi (θ). To complete the proof of the Lemma, we
shall show that

〈G, n〉 ∈ Clique ⇐⇒ 〈A, θ, a, ā〉 ∈ Gen-Confi,

that is, G has a clique of size n if and only if (a, ā) ∈ ψ.
Suppose first that G has a clique of size n. Then G′ has a clique of size

n+ 1 that includes the vertex a. Therefore, there is a graph homomorphism
t0 from K to G′. Because of the symmetry of K, we can assume that
t0(ā) = a. The map t0 can be extended to a graph homomorphism t : G′′ →
G′′ by mapping each vertex of G′ to itself. Theorem 4.1 yields an (algebra)
homomorphism t̂ : A→ A. Note that by the definition of t̂, we have t̂(ā) = a.
Now, using the fact that ψ is a fully invariant congruence, we compute

(ā, ē) ∈ ψ =⇒ (f0(ā), f0(ē)) = (u, ā) ∈ ψ =⇒
(t̂(u), t̂(ā)) = (u, a) ∈ ψ =⇒ (a, ā) ∈ ψ.

Conversely, suppose (a, ā) ∈ ψ. Since A is a unary algebra and K̂ is a
subalgebra, by Lemma 3.2 there is a congruence ν = K̂2 ∪ δA on A. Since
(a, ā) /∈ ν, we certainly have ψ * ν. On the other hand, θ ⊆ ν, so ν is
not fully invariant. (For otherwise, ψ = Cgfi(θ) ⊆ ν.) It follows that some
endomorphism of A must fail to map K̂ to itself. By Theorem 4.1, this
endomorphism is of the form t̂, for some t : G′′ → G′′, and it must be the
case that t does not map K into itself. But since K is complete and is
disjoint from G′, t must actually map K to G′. Therefore, G′ contains a
clique of size n + 1. At most one of the vertices in the clique can be equal
to a, so we conclude that G has an n-clique. �

Theorem 4.3. Gen-Confi is NP-complete

Proof. Our modified version of Algorithm 1 shows that Gen-Confi ∈ NP.
Since Clique is NP-complete, it follows from Lemma 4.2 that Gen-Confi

is NP-complete as well. �

The notion of “full invariance” can be extended to objects other than
congruences on algebras. For example, let G = 〈G, ε〉 be a digraph and
S ⊆ G. Let us call S fully invariant if for every h ∈ End(G), h(S) ⊆ S.
Furthermore define the fully invariant subset generated by a set S (denoted
SgG

fi (S)) to be the smallest fully invariant subset of G containing S. Notice
that SgG

fi (S) =
⋃
{h(S) : h ∈ End(G) }. We define two problems:

FI-Subset = { 〈G, S〉 : G a digraph and S a fully invariant subset }
Gen-Subsetfi =

{
〈G, S, a〉 : G a digraph and a ∈ SgG

fi (S)
}
.

Using the same ideas as in Theorem 4.3, we can prove the following.
Theorem 4.4. FI-Subset is complete for co-NP. Gen-Subsetfi is com-
plete for NP.
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Proof. Suppose that 〈G, S〉 is an instance of FI-Subset. Let P denote
the complement of FI-Subset. To show that S is not fully invariant, we
can guess a function h : G → G and verify that h is an endomorphism and
that h(S) * S. This gives a nondeterministic algorithm for P that runs in
polynomial time. To reduce Clique to P, let G be a loopless graph and n
a positive integer. Let H = G + Kn. Then it is easy to see that Kn fails to
be fully invariant in H if and only if there is a (graph) homomorphism from
Kn to G. This in turn is equivalent to the existence of an n-clique in G.
Thus P is NP-complete, and therefore FI-Subset is complete for co-NP.

Now for the second problem. The condition 〈G, S, a〉 ∈ Gen-Subsetfi

can be checked by guessing a function h : G → G, checking that h is an
endomorphism of G, and that a ∈ h(S). To prove that Clique ≤log

Gen-Subsetfi follow the construction given in Lemma 4.2 to produce the
graph G′′. Then one easily sees that G has an n-clique if and only if
a ∈ SgG′′

fi (K). Thus Gen-Subsetfi is NP-complete. �
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[5] M. Demlová, J. Demel, and V. Koubek, Simplicity of algebras requires to investigate
almost all operations, Comment. Math. Univ. Carolin. 23 (1982), no. 2, 325–335.

[6] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Com-
plexity of Computation (Providence, R.I.) (R. Karp, ed.), Proceedings of the SIAM-
AMS Symposium in Applied Math, vol. 7, American Mathematical Society, 1974,
pp. 27–41.

[7] R. Freese, Computing congruences efficiently, Manuscript available at
http://www.math.hawaii.edu/~ralph/Preprints/cg.pdf, March 1999.

[8] M. Garey and D. Johnson, Computers and intractability—a guide to the theory of
NP-completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[9] G. Grätzer, Universal algebra, second ed., Springer-Verlag, New York, 1979.
[10] Z. Hedrĺın and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math.

10 (1966), 392–405.
[11] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and

computation, Addison-Wesley, Reading, MA, 1979.
[12] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16

(1987), no. 4, 760–778.
[13] N. D. Jones, Space-bounded reducibility among combinatorial problems, J. Comput.

System Sci. 11 (1975), no. 1, 68–85.
[14] N. D. Jones and W. T. Laaser, Complete problems for deterministic polynomial time,

Theoret. Comput. Sci. 3 (1977), 105–117.

17
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