Hyperparameter Optimization on Neural Machine Translation

Souparni Agnihotri

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents

Part of the Artificial Intelligence and Robotics Commons

Recommended Citation
https://lib.dr.iastate.edu/creativecomponents/124

This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Hyperparameter Optimization on Neural Machine Translation

by

Souparni Agnihotri

A Creative Component submitted to the Graduate Faculty
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Chinmay Hegde, Major Professor

The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation/thesis. The Graduate College will ensure this dissertation/thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University
Ames, Iowa
2019

Copyright © Souparni Agnihotri, 2019. All rights reserved.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1. OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2. REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Recurrent Neural Networks</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Encoder Decoder Model</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Vanishing Gradient Decent</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Long Short Term Memory Networks</td>
<td>5</td>
</tr>
<tr>
<td>2.5 The Transformer</td>
<td>6</td>
</tr>
<tr>
<td>2.6 ELMo</td>
<td>8</td>
</tr>
<tr>
<td>2.7 BERT</td>
<td>8</td>
</tr>
<tr>
<td>2.8 Sequence to Sequence Learning with Neural Networks</td>
<td>9</td>
</tr>
<tr>
<td>2.9 Hyper parameter Optimization</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 3. METHODS AND PROCEDURES</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Hyperparameter selection</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1 Learning Rate</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Optimizer</td>
<td>11</td>
</tr>
</tbody>
</table>
3.3.1 Stochastic Gradient Descent ... 12
3.3.2 Adam Optimizer .. 12

3.4 Type of attention ... 12
3.4.1 Bahdanau ... 13
3.4.2 Luong ... 13

3.5 Attention Architecture ... 13
3.5.1 Standard ... 13
3.5.2 Google Neural Machine Translation (GNMT) 13

3.6 Encoder type ... 14
3.6.1 Unidirectional ... 14
3.6.2 Regularization ... 15

3.7 Inference mode ... 15
3.7.1 Greedy ... 15
3.7.2 Beam Search .. 16

3.8 Testing mechanism .. 17
3.8.1 BLEU scores .. 17

3.9 Random Search .. 17
3.10 Successive Halving ... 17
3.11 Hyperband ... 18
3.12 Proposed Algorithm ... 18
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The different hyperparameter configurations obtained via random search</td>
<td>21</td>
</tr>
<tr>
<td>4.2</td>
<td>The different hyperparameter configurations obtained via random search</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>The different hyperparameter configurations obtained via successive halving</td>
<td>22</td>
</tr>
<tr>
<td>4.4</td>
<td>The final hyperparameter configurations for the given model and dataset</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Architecture of an RNN</td>
<td>3</td>
</tr>
<tr>
<td>4figure.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6figure.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7figure.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Bi-directional RNNs (http://opennmt.net/OpenNMT)</td>
<td>15</td>
</tr>
<tr>
<td>16figure.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>The variation of the BLEU for every step in the training process</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>The variation of the BLEU score obtained with respect to different learning rates. The configuration used was</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Vietnamese to English translations</td>
<td>24</td>
</tr>
<tr>
<td>4.4</td>
<td>Vietnamese to English translations</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>German to English translation at epoch 122000</td>
<td>25</td>
</tr>
<tr>
<td>4.6</td>
<td>German to English translation at epoch 122000</td>
<td>25</td>
</tr>
</tbody>
</table>
I would like to take this opportunity to express my thanks to Dr. Chinmay Hegde for his help during the various aspects of conducting research and the writing of this thesis. His guidance, patience and support were invaluable throughout my degree, and his insights and words of encouragement have often inspired me and renewed my hopes for completing my graduate education.
ABSTRACT

With the growth of deep learning in the recent years, there have been several models created to tackle different real world goals, autonomously. One such goal is the automatic translation of text from one language to another. This is commonly known as Neural Machine Translation (NMT). NMT has proved to be a significant challenge to achieve, given the fluidity of human language.

Most NMT models rely on Recurrent Neural Networks (RNNs) and deep Long Short-Term Memory networks (LSTMs). In this study, we will explore the Sequence to Sequence Learning with Neural Networks Model (Sutskever et al. (5)) and perform an ablation study of the model on two different data sets - the English-Vietnamese parallel corpus by the IWSLT Evaluation Campaign, and the German-English parallel corpus obtained from the WMT Evaluation Campaign.
CHAPTER 1. OVERVIEW

In the recent years, Neural Machine Translation (NMT) has seen immense growth. In this report, we introduce Neural Machine Translation and the major concepts associated with it. Architectures such as Recurrent Neural Network (RNN), Long Short term Memory Networks (LSTM), the Transformer, Sequence to Sequence learning with Neural Networks and the Google Neural Machine Translation model (GNMT) are crucial for understanding NMT in detail. We then explain the hyperparameters that can be tuned to make the Machine Translation Model better and discuss different ways to find the right hyperparameter configuration for a given dataset. We show the results obtained from our experiments and the inferences that can be gained from them. This report will provide insight to training and testing of future NMT models.

1.1 Introduction

Neural Machine Translation has generated a lot of interest in solving the Machine Translation problem in the recent years. The use of Deep Neural Networks (DNNs) has proved extremely powerful because of their ability to perform arbitrary parallel computation within a small number of steps. In addition, DNNs support supervised backpropogation so that when they are trained with enough information, supervised backpropogation might find the optimal parameters to solve the problem. However, one of the biggest limitations of DNNs is that it can only be applied to problems whose inputs and outputs can be sensibly encoded with vectors of the same dimensionality. To solve this issue, LSTMs are introduced. One of the useful properties of LSTMs is that they can learn to map an input sentence of variable length into a fixed dimensional vector representation, Translations tend to be paraphrases of the input sentence and the translation objective encourages LSTMs to find sentence representations that capture their meaning as sentences with similar meanings will be closer to each other than sentences with different meanings (Sutskever et al. (5)).
For this study, we use the seq2seq model provided by Neural Machine Translation (seq2seq) tutorial (Luong et al. (9)) which uses an encoder-decoder mechanism to generate the machine translations. We compare and contrast the workings of different hyperparameters on the two datasets and analyze why some hyperparameter settings seem to be better, given the dataset.
CHAPTER 2. REVIEW OF LITERATURE

2.1 Recurrent Neural Networks

Recurrent Neural Networks are networks in which information is propagated from the previous time step to the next time step. They can be thought of as multiple copies of the same network, each passing a message from one successor to another. This chain-like structure suggests that RNNs can be associated with sequences or lists and have thus found a variety of applications like speech recognition, language processing and machine translation.

RNNs simply accept an input sequence x and output a sequence y. The crucial factor is that the output’s vector is influenced not only by the corresponding input, but by the whole sequence of inputs that has been fed in. RNNs can be shaped as a form of repeating modules of a neural network. The repeating module contains a single simple structure – such as that of a single tanh layer as shown below.

![Architecture of an RNN](image)

Figure 2.1 Architecture of an RNN

When an RNN takes a sentence in as an input, it handles the sentence word by word. This proves to be an obstacle to parallelization of the training process. In addition, when the sequences
are long, the model is prone to forgetting the content of distant positions as described in section 2.3. All these issues are solved with the introduction of the transformer architecture in section 2.5.

2.2 Encoder Decoder Model

One of the most common types of architectures used for machine translation is the encoder-decoder model. The encoder - true to its name - encodes the sequence to a fixed dimensional vector. The decoder then processes this vector to produce a translation.

![Diagram of the Encoder Decoder Model](image)

Figure 2.2 Depiction of the Encoder Decoder Model taken from ”The Illustrated Transformer”. Alammar Jay. (13)

One of the key benefits to such a model is the ability to handle variable length input and output sentences of text. Later in the report, we will see when encoder decoder models were first introduced and how LSTMs were used to implement them.
2.3 Vanishing Gradient Decent

In language modeling, there are cases where there is a need to store very long-term dependencies. Suppose we have to predict the last word in the sentence "I live in Germany and I speak fluent German." We need the context of Germany to predict the word German. There is a chance that the gap between the relevant information and the point where it is needed becomes very large. The shortcomings of RNNs shows up when they are no longer able to connect the long term dependencies.

This was further explored in the paper "Learning Long-Term Dependencies with Gradient Descent is Difficult" Bengio et al (1). As the context length between two words increases, layers in the unrolled RNN also increase. As the network becomes deeper the gradients flowing back in the back propagation step becomes smaller. As a result, the learning rate becomes very slow and makes it infeasible to expect long term dependencies for that language. As a result, RNNs face difficulty in memorizing previous words very far away in the sequence and can only make predictions based on the recent words.

Long Short Term Memory Networks (LSTMs) solve this issue.

2.4 Long Short Term Memory Networks

LSTMs are a special kind of RNN capable of learning long-term dependencies. They are explicitly designed to solve the vanishing gradient problem.

They differ from regular RNNs in that the recurring/repeating module has a different structure. Instead of a single neural network layer, there are 4 layers interacting with each other. The LSTM maintains a cell state that carries the information across it. The LSTM has the ability to add or remove information to the cell state through carefully regulated structures called gates. Gates are composed out of a sigmoid neural net layer and a pointwise multiplication operation. This way, they have the ability to optionally let information through. This layer is also called the "forget gate layer." This is the first step in an LSTM.
The second step is to decide what information is going to be stored in the cell state. First, a sigmoid layer decides which values are going to be updated and a tanh layer creates a vector of candidate values that would be added to the state. Both these values are combined to create an updated version of the cell state.

The final step decides what is going to be the output. First, a sigmoid layer is run to decide which parts of the cell state is going to be in the output. Then this cell state is put through tanh and multiply the output of the sigmoid gate. This will ensure that the output will contain only the parts we want it to contain.

Figure 2.3 LSTM picture taken from (author?) (LSTM- Colah’s blog)

2.5 The Transformer

The Transformer is a model that uses attention to speed up the training of attention networks. They allow for significantly more parallelization and thus solves the regular problems faced by RNNs. The Transformer follows the overall architecture of the encoder decoder model by using stacked attention and point wise fully connected layers for both the encoder and the decoder.

The encoding component has a stack of encoders on top of each other and the decoding component also has a stack of decoders of the same length. Each of the encoders is broken down into two parts - self-attention and the feed forward neural network. The outputs of the self attention is
applied to the feed forward neural network. The decoder is composed of both those layers but has an attention layer in between them to focus on relevant parts of the sentence.

The architecture of the Transformer is as follows:

![The Transformer architecture from Vaswani et al.](image)

Figure 2.4 The Transformer architecture from Vaswani et al. (10)
2.6 ELMo

Over the last one year, a new type of deep contextualized word representation was introduced that models the complex characteristics of word use as well as how these uses vary across linguistic contexts. According to the "Deep Contextualized Word Representations" paper, these word embeddings are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text-corpus.

The three salient ELMo representations are:

- **Contextual** - The representation of each word depends on the entire context in which it is used.
- **Deep** - The word representations combine all the layers of a deep pre-trained neural network
- **Character based** - ELMo representations are purely character based, allowing the network to use morphological clues to form robust representations for out-of-vocabulary tokens unseen in training.

It has been found that adding ELMo to existing NLP systems has significantly improved the state of the art for every considered task. The above information was referred from Peters et al. (11)

2.7 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a recent approach published in Devlin et al. (12). It is designed to pre-train bidirectional representations of Transformer and apply it to language modeling. The paper shows that a language model which is bidirectionally trained can have a deeper sense of language context and flow than uni-directional models. Since BERT’s main goal is to generate a language model, it only uses the encoder mechanism of the Transformer. The specifics of the BERT model can be obtained from the paper. BERT can be used for a wide variety of language tasks by just adding a small layer to the core model.
• Classification tasks can be carried out by adding a classification layer on top of the Transformer output.

• Using BERT, Question Answering models can be trained by learning two extra vectors that mark the beginning and the end of an answer.

It has been shown that using BERT has provided state of the art results on a wide variety of Natural Language Processing (NLP) tasks. BERT has proven to be a breakthrough in Machine Learning and NLP. Its approachability and fast fine-tuning allows for a wide range of applications.

2.8 Sequence to Sequence Learning with Neural Networks

Sequence to Sequence Learning with Neural Networks was introduced in 2014. The paper introduced an end to end to sequence learning. Their method used a multilayered LSTM to map the input sequence to a vector of fixed dimensionality and then another deep LSTM to decode the target sentence from the vector. The paper, "Sequence to Sequence Learning with Neural Networks" Sutskever et al. (5) specifically tackles the translation of English to French on the WMT14 dataset. Although LSTMs have been developed to do machine translation, the authors approach had some major modifications that built on top of regular LSTMs. One of the things LSTMs suffer from is their performance on very large sentences as even they tend to forget some very long term dependencies. One of the major modifications the authors made, was that they reversed the order of words in the source sentence but not the target sentence in the training and test set. By doing so, they introduced many short term dependencies that made the optimization problem much simpler. For example, given an input sequence a, b, c and it had to be translated to x, y and z , the LSTM was asked to map c, b, a to x, y and z instead of doing a direct mapping. This way, a would be in close proximity with x, b in close proximity y with and so on.

Their overall model differed from a regular LSTM in the fact that they used two different LSTMs. The first LSTM is used to read the input sequence and obtain a large fixed dimensional vector representation. The second LSTM, which is essentially a RNN language model conditioned on the input sequence, extracts the output sequence from that vector. They do this because it
increases the number of model parameters at negligible computational cost, making it natural to train on multiple language pairs simultaneously. In addition to the above, the authors used a deep LSTM of four layers as they found that it significantly outperforms shallow LSTMs.

A fascinating result of this approach is that the source sentences were reversed. The authors found that doing so increased the BLEU scores from 25.9 to 30.6. They believe this is because of the introduction of many short term dependencies. In general, when a source sentence and target sentence is concatenated together, each word in the source sentence is very far away from the target sentence. But when the source sentence is reversed, the average distance between the corresponding words in the source and target language remain unchanged. Since the first few words in the source sentence are very close to the first few words in the target sentence, back propagation could have an easier time finding the sequence and communicating with the source and target sentence which results in overall improvement in performance.

2.9 Hyper parameter Optimization

While training a model, it is important to know which hyperparameters to choose. Hyperparameters refer to the parameters that are set before the start of training. The time required to train and test a model is dependent on the types of hyperparameters chosen. The tune-ability of an algorithm, hyperparameter, or interacting hyperparameters is a measure of how much performance can be gained by tuning it. For an LSTM, the learning rate followed by the network size are its most crucial hyperparameters. Hyperparameter optimization relies on finding the most optimal tuple which will minimize the predefined loss function on a given data. In this paper we will specifically analyze which hyperparameters work best on the NMT models – specifically the model inspired by the sequence to sequence learning with Neural Networks – given a particular data set.
CHAPTER 3. METHODS AND PROCEDURES

3.1 Introduction

The basis for hyperparameter optimization lies in picking the right hyperparameters before training. Once these hyperparameters are picked, it is important to narrow down our options so that we end up with a certain configuration that would work on our given model and dataset. This section introduces the different hyperparameters that were chosen and the algorithms used to narrow down the list so as to obtain the most optimal hyperparameters for the given NMT task.

3.2 Hyperparameter Selection

3.2.1 Learning Rate

The learning rate is a hyperparameter that controls how much the weights of the network are getting adjusted with respect to the loss gradient. Typically learning rates are configured at random by the user. It is often hard to get it right. The way in which learning rate changes over time (training epochs) is referred to learning rate decay, ”Adaptive learning rate” is a process in which a small learning rate is chosen and if the performance doesn’t improve after a fixed number of epochs, the learning rate is increased by a fixed number tested again. An adaptive learning rate generally outperforms a model with a badly configured learning rate.

3.3 Optimizer

An optimizer is a mathematical way of measuring how wrong the predictions are. Optimizers tie together the loss function and the model parameters by updating the model in response to the output of the loss function. There are two types of optimizers we will discuss - Stochastic Gradient Descent and Adam optimizer.
3.3.1 Stochastic Gradient Descent

Gradient descent is an algorithm that has been used all across Machine Learning to optimize. There are three steps involved in gradient descent –

• Calculate what a small change in each individual weight would do to the loss function

• Adjust each individual weight based on its gradient.

• Repeating the first two steps until loss is minimized

It is important to find the right learning rate so as to avoid the gradient from getting stuck in a local minima.

In Stochastic gradient descent, instead of calculating the gradients of all of our training examples on every pass of the gradient, we only use a small subset or mini-batches of training examples. The reason this is done is to first reduce the variance in parameter update and hence, lead to a more stable convergence; and second, to utilize highly optimized matrix operations that should be used for computing the cost and gradient.

3.3.2 Adam Optimizer

Adam stands for adaptive moment estimation. Adam utilizes the concept of momentum by adding fractions of previous gradients to the current one. We are not going to go into the mathematics of this here but it is important to remember that all optimizers have the same goal: minimizing the loss function.

3.4 Type of attention

This describes the type of attention mechanism that we use in the encoder and decoder. More information and code for the Luong and Bahdanau attentions can be found in spro (14).
3.4.1 Bahdanau

This mechanism gives decoder a way to "pay attention" to parts of the input rather than relying on a single vector. Attention is calculated with a feedforward layer in the decoder which then creates a new vector which is processed through a softmax layer to create attention weights that are multiplied with encoders outputs to create a new context vector which is used to predict the next output. The attention scores in Bahdanau are calculated using the concat mechanism which involves taking a dot product between a new parameter v_a and a linear transform of the states concatenated together.

3.4.2 Luong

The Effective Approaches to Attention-based Neural Machine Translation introduced by Luong et al. describes a few more attention models that offer improvements and simplification. The main difference between the luong attention and the bahdanau mechanism is the scoring. In luong, the specific score function that compares two states is a dot product between the current states and the previous hidden state of the network.

3.5 Attention Architecture

3.5.1 Standard

The standard attention architecture refers to the architecture described in sequence to sequence learning with neural networks (section 2.8)

3.5.2 Google Neural Machine Translation (GNMT)

The GNMT model described by Wu et al. (7) aims to address the issue that NMT systems lack robustness, particularly when the input sentences contain rare words. The model consists of a deep LSTM network with 8 encoder and 8 decoder layers using residual connections as well as attention connections from the decoder network to the encoder. The attention model connects the
bottom layer of the decoder to the top layer of the encoder in an attempt to improve parallelism and decrease training time. In the GNMT model, the words are divided into a limited set of sub-word units in order to handle rare words. According to the paper, this method provides a good balance between the flexibility of character-delimited models and the efficiency of word-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. In addition, their beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. This architecture has achieved state of the art performance on the EMT’14 English-to-French and English-to-German datasets.

3.6 Encoder type

3.6.1 Unidirectional

A unidirectional encoder is a simple recurrent neural network. (LSTM) The unidirectional LSTM only preserves information from the past as the inputs it gets are only from the past.

3.6.1.1 Bi-directional

The bidirectional encoder consists of two independent encoders. One for the encoding of the normal sequence and another for the encoding for the reversed sentence. Hence, the input is run two ways – one from the past to the future and another from the future to the past. The output and final states are concatenated or summed. Using the two hidden states, we can, at any point in time, preserve the information from both the past and the future.

The figure 3.1 illustrates the past and the future states interacting with each other.

3.6.1.2 GNMT

The Google encoder is an encoder with a single bidirectional layer as described in Wu et al. (7). The bidirectional states are concatenated and residual connections are enabled by default.
3.6.2 Regularization

Regularization is used to prevent neural networks from overfitting and increase generalization capacity. Dropout is an effective regularization strategy introduced by (4). It is only applied during the training process. In general, a batch of individual neurons are disabled with a probability p. If p is set to 0 there will be no dropout. The default regularization is dropout with a probability of 0.2. That is the dropout we use throughout our experiments as previous experiments have proven to show that it works well.

3.7 Inference mode

After training a model, it is usually released for inference. During inference, we only have access to the source sentences (encoder inputs). Then there are three ways to do the decoding – sampling, greedy and beam search.

3.7.1 Greedy

As soon as the decoder gets the starting symbol $< s >$ from the encoder, for each time step on the decoder side, the RNN’s output is treated as a set of logits and the word with the maximum
logit value is chosen. This is then passed in as input to the next time step. This process is continued until the end of sentence marker < /s > is reached. The figure below shows greedy inference very well.

![Greedy Decoding Diagram](image)

Figure 3.2 Greedy decoding obtained from Luong et al. (9)

3.7.2 Beam Search

Beam Search uses breadth-first search to build its search tree but only keeps the top N (beam size) nodes at each level in memory. The next level is then expanded from those N nodes. Its search space is much larger than the greedy mechanism.
3.8 Testing mechanism

3.8.1 BLEU scores

The Billingsual Evaluation Understudy (BLEU) score Papineni et al. (2) is a common way to find how well a machine translation system performed when there can be multiple good outputs.

Consider the following example: In French: Le chat est sur le tapis Reference English translation: The cat is on the mat NMT English translation: There is a cat on the mat.

Both the English translations are equally good. Suppose we had the MT model predict the translation to be The the the the the we know this is not a very good translation but we need to measure exactly how bad this is. The BLEU score gives us this measure. It uses n-grams and finds what fraction of the n-grams in the machine translation output also exist in the references. The metric ranges from 0 to 1 and few translations attain a score of 1 unless they are identical to the reference translation.

3.9 Random Search

For a long time, grid search (building a model for every configuration of hyperparameters and evaluating each model) and manual search were the most widely used strategies for hyperparameter optimization. In 2012, two researchers from the University of Montreal introduced random search in their paper ”Random Search for Hyper-Parameter Optimization” (3). Random search is a very simple concept – random combinations of the hyperparameters are chosen and trained. Random search seemed to find the better models by effectively searching a larger, less promising configuration space.

3.10 Successive Halving

Successive halving is an improvement over random search. The idea of successive halving is to first try N hyperparameter settings for some fixed amount of time T. Then, we keep $N/2$ of the best performing hyperparameters and run for time $2T$. For applying successive halving, we need
to temporarily halt the training of a model, save the model and then proceed with the training. The latter part can be problematic when using open source neural network models as it might be difficult to stop and restart the training at any time with different configurations. Our adaptation works around this issue by simply training them to completion and showing that the same results can be obtained.

3.11 Hyperband

The paper for Hyperband can be referred from Li et al (15) Hyperband adopts both random search and successive halving for hyperparameter optimization. It is a bandit-based strategy for hyperparameter optimization that iteratively allocates resources to a set of random configurations. Given a predefined budget B for one iteration, like time or total number of epochs, Hyperband samples a fixed number of configurations uniformly at random and uses successive halving to discard poorly performing configurations. The following steps explain the algorithm in more detail:

1. Randomly sample a set of hyperparameter configurations
2. Evaluate the performances of all currently remaining configurations.
3. Throw out the bottom half of the worst performing configurations.
4. Repeat step 2 until only one configuration remains.

3.12 Proposed Algorithm

In our implementation of hyperparameter optimization we perform a slight modification in the successive halving phase. We allow each of the configurations to execute to completion before making a decision to discard or keep that particular configuration. In addition, adaptive learning rates is implemented where the learning rate is increased in specific increments after starting from a specific minimum. We ended up checking for the learning rate after deciding on the other hyperparameters. The algorithm can be described as follows:
Algorithm 1 Modified Successive Halving

input: previous configurations \(O \), record of previously obtained BLEU scores \(B \), number of configurations \(N \), number of epochs \(E \)

output: The BLEU score for current configuration; the next configuration to consider \(C \)

while \(N \neq 1 \) do

if \(O < N \) then

create random configuration \(C \)

Train \(C \)

Record BLEU score \(b \) in \(B \)

\(O += 1 \);

else

for all configs \(C \) in \(O \) do

Find \(N/2 \) configurations with the highest BLEU scores.

\(N = N/2 \)

Retrain the model with the different configurations.

Record the BLEU scores in \(B \) and repeat until only one configuration is left.

end for

end if

end while

As is evident, this algorithm is a combination of random search and successive halving. In the first \(N \) configurations, the hyperparameters are randomly picked. In our implementation the learning rate was picked in uniform random intervals from 0.0001 to 0.1. After the random search was done, we resorted to successive halving by training \(N/2 \) number of configurations and doubling the number of epochs. At this point, we also know a subset of the hyperparameters that work better than the others so we can even reduce the range of different hyperparameters to choose from. The main difference from regular successive halving is that we run each of the configurations to completion instead of halting the model and changing the configurations and then continuing. We found that this helps make the results more accurate although it takes more time to train to completion.

Once the optimal set of hyperparameters are obtained, the learning rate was further configured using the learning rate schedule. This helped us find a subset of values that would help us obtain the highest BLEU score. The next section talks about the results obtained.
CHAPTER 4. RESULTS

4.1 System Configurations:

The training was done on a CentOS system that was running the NVIDIA GeForce GTX 1080 GPU. The CPU used is Intel Xeon CPU E5-2620 v3 with a 2.40GHz clock. It has 12 CPU cores and a 64GB RAM.

4.2 Training Data:

The English-Vietnamese parallel corpus of TED talks (133K sentence pairs) provided by the IWSLT Evaluation Campaign.

For the large scale training we used the German-English parallel corpus (4.5M sentence pairs) provided by the WMT Evaluation Campaign.

4.3 Evaluation

Random search was first applied and each of the model configurations were trained for 6000 epochs. The results are shown in Table 4.1 and 4.2

It is clear to see that beam search and greedy inference modes performed better than the sample inference. Using successive halving, we can choose the top 4 performing configurations and run them for 12,000 epochs. The BLEU scores improved significantly. When beam search is used, the beam width is always 10. The results are shown in Table 4.3

After narrowing down the four configurations from successive halving, it is clear which configuration is the best for the given dataset. Keeping other hyperparameters the same, the luong attention model seemed to outperform the bahdanau attention. In addition, for the given dataset, the standard attention architecture seemed to perform better than the GNMT architecture. This means that unidirectional encoders were better than bidirectional encoders. A combination of
We observe that beam search clearly helps the model perform better than greedy. The current beam search strategy generates the target sentence word by word from left to right while keeping a
Table 4.3 The different hyperparameter configurations obtained via successive halving

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Config 1</th>
<th>Config 2</th>
<th>Config 3</th>
<th>Config 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning rate</td>
<td>0.001392</td>
<td>0.03648</td>
<td>0.00993</td>
<td>0.01135</td>
</tr>
<tr>
<td>Optimizer</td>
<td>sgd</td>
<td>adam</td>
<td>sgd</td>
<td>sgd</td>
</tr>
<tr>
<td>Type of attention</td>
<td>luong</td>
<td>bahdanau</td>
<td>luong</td>
<td>bahdanau</td>
</tr>
<tr>
<td>Architecture</td>
<td>standard</td>
<td>gnmtV2</td>
<td>gnmtV2</td>
<td>standard</td>
</tr>
<tr>
<td>Inference mode</td>
<td>greedy</td>
<td>beam</td>
<td>beam</td>
<td>greedy</td>
</tr>
<tr>
<td>BLEU dev</td>
<td>14.1</td>
<td>6.0</td>
<td>11.6</td>
<td>11.7</td>
</tr>
<tr>
<td>BLEU test</td>
<td>16.1</td>
<td>5.1</td>
<td>12.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Table 4.4 The final hyperparameter configurations for the given model and dataset

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Config 1</th>
<th>Config 2</th>
<th>Config 3</th>
<th>State of the art (133K epochs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning rate</td>
<td>1</td>
<td>1</td>
<td>0.734589</td>
<td>1</td>
</tr>
<tr>
<td>Optimizer</td>
<td>sgd</td>
<td>sgd</td>
<td>sgd</td>
<td>sgd</td>
</tr>
<tr>
<td>Type of attention</td>
<td>luong</td>
<td>bahdanau</td>
<td>luong</td>
<td>luong</td>
</tr>
<tr>
<td>Architecture</td>
<td>standard</td>
<td>standard</td>
<td>standard</td>
<td>standard</td>
</tr>
<tr>
<td>Inference mode</td>
<td>beam</td>
<td>greedy</td>
<td>greedy</td>
<td>beam search</td>
</tr>
<tr>
<td>BLEU dev</td>
<td>18.1</td>
<td>14.2</td>
<td>17.1</td>
<td>23.8</td>
</tr>
<tr>
<td>BLEU test</td>
<td>20.3</td>
<td>15.6</td>
<td>19.8</td>
<td>26.1</td>
</tr>
</tbody>
</table>

fixed amount of active candidates at each time step. The greedy strategy only compares one most-likely candidate. Thus the larger search space could help beam search make better judgements about past word relationships. Some other observations we made are that – Adam optimizer tends to give reasonable results for unfamiliar architectures but SGD with scheduled learning rate tends to lead to better performance. Luong style works well with different settings. But from other resources we find out that Bahdanau style attention often works better with bidirectionality on the encoder side. For the Vietnamese-English translations, unidirectional encoders and the standard architecture worked very well. However when we trained the German-English dataset, the bidirectional encoder and GNMT architecture worked well.
In the following figures, all the experiments are trained with the configuration:

- Number of epochs - 6000
- Optimizer - sgd
- Type of attention - Luong
- Encoder - uni-directional
- Inference mode - Beam search

Figure 4.1 The variation of the BLEU for every step in the training process

We see a near logarithmic increase in the BLEU scores. There is a high of 18.1 at around 11,000 epochs.

From the learning rate schedule, we can see that the BLEU score was at its best when the learning rate was between 0.65 to 0.75. The next thing to try would be to create another schedule and increase the learning rate with smaller increments to narrow down the prospects. Figures 4.3 - 4.5 shows the Vietnamese to English translations during training.
Figure 4.2 The variation of the BLEU score obtained with respect to different learning rates. The configuration used was

\textbf{src:} Đây là vết râm nắng đầu tiên của tôi
\textbf{ref:} This was my first sunburn .
\textbf{nmt:} This is my first goodbye .

Figure 4.3 Vietnamese to English translations

For the German to English translations we found the optimal parameters to be -

- Optimizer - sgd
- Type of attention - normed bahdanau
- Attention architecture - gnmtV2
- Encoder - Gnmt
- Inference mode - Beam search
source: Alfred Gonzalez
reference: This is Alfred Gonzalez
neural machine translation: Alfred <unk>.

Figure 4.4 Vietnamese to English translations

We trained this configuration to 122,000 steps and got a dev BLEU score of 22.2 and a test BLEU of 22.4. Fig 4.5 and 4.6 show some of the results obtained from these tests.

source: Es ist bestimmt interessant, die Problematik mal von einer breiteren eren Perspektive aus zu betrachten
reference: It will certainly be interesting to look at this issue from a broader perspective
neural machine translation: It is certainly interesting to look at the issue of a wider perspective.

Figure 4.5 German to English translation at epoch 122000

source: Die Anhörung soll an diesem Wochenende wieder aufgenommen werden. Die Staatsanwaltschaft erwartet, dass die Haftbedingungen gerecht fertigt waren.
reference: The hearing is scheduled to resume this weekend, with prosecutors expected to argue that the detention conditions were warranted.
neural machine translation: The continuation of the hearing will be held this weekend, and the prosecution service will be expected to justify the conditions of the law.

Figure 4.6 German to English translation at epoch 122000
CHAPTER 5. SUMMARY AND DISCUSSION

Machine Translation has seen significant progress over the last few years. In this work we showed that a layered LSTM layer like in the sequence to sequence learning model and the GNMT model work differently on different datasets. In addition, every hyperparameter affects the performance of the model. When making any model, we have an idea about the top hyperparameters that affect the model the most and in the case of NMT, the attention architecture, optimizers, attention mechanism and the inference mode can significantly impact the results and performance of the model.

We need to keep in mind that not all datasets work with the configurations shown in this report. The report only covers the Vietnamese to English and the German to English translations. Given a different dataset, it is difficult to pinpoint exactly what configuration would be the most optimal, but we can narrow down the options by utilizing one of the hyperparameter optimization methods described in this report.

Further work can be put into exploring other algorithms for finding the learning rate. This report introduced adaptive learning rates but it would be interesting to explore search algorithms for continuous variables to hone in on a good learning rate. In addition, more research can be put into finding optimal neural architecture for NMT models.
REFERENCES

[OpenNMT] OpenNMT tutorials http://opennmt.net/OpenNMT/training/models/

[LSTM- Colah’s blog] Understanding LSTM Networks – colah’s blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/