Altering the Substrate Specificity of Acetyl-CoA Synthetase by Rational Mutagenesis of the Carboxylate Binding Pocket

Thumbnail Image
Date
2019-01-01
Authors
Butler, Brandon
Oliver, David
Nikolau, Basil
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nikolau, Basil
Emeritus Faculty
Person
Yandeau-Nelson, Marna
Associate Professor
Person
Oliver, David
Professor
Research Projects
Organizational Units
Organizational Unit
NSF Engineering Research Center for Biorenewable Chemicals
Founded in 2008 with more than $44M in federal, industry, and Iowa State University funding, CBiRC works in tandem with Iowa and the nation’s growing biosciences sector. CBiRC’s goal is to lead the transformation of the chemical industry toward a future where chemicals derived from biomass resources will lead to the production of new bioproducts to meet evolving societal needs.
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
NSF Engineering Research Center for Biorenewable ChemicalsGenetics, Development and Cell BiologyCenter for Metabolic BiologyNSF Engineering Research Center for Biorenewable Chemicals
Abstract

Acetyl-CoA synthetase (ACS) is a member of a large superfamily of enzymes that display diverse substrate specificities, with a common mechanism of catalyzing the formation of a thioester bond between Coenzyme A and a carboxylic acid, while hydrolyzing ATP to AMP and pyrophosphate. As an activated form of acetate, acetyl-CoA is a key metabolic intermediate that links many metabolic processes, including the TCA cycle, amino acid metabolism, fatty acid metabolism and biosynthetic processes that generate many polyketides and some terpenes. We explored the structural basis of the specificity of ACS for only activating acetate, whereas other members of this superfamily utilize a broad range of other carboxylate substrates. By computationally modeling the structure of the Arabidopsis ACS and the Pseudomonas chlororaphis isobutyryl-CoA synthetase using the experimentally determined tertiary structures of homologous ACS enzymes as templates, we identified residues that potentially comprise the carboxylate binding pocket. These predictions were systematically tested by mutagenesis of four specific residues. The resulting rationally redesigned carboxylate binding pocket modified the size and chemo-physical properties of the carboxylate binding pocket. This redesign successfully switched a highly specific enzyme from using only acetate, to be equally specific for using longer linear (up to hexanoate) or branched chain (methylvalerate) carboxylate substrates. The significance of this achievement is that it sets a precedent for understanding the structure–function relationship of an enzyme without the need for an experimentally determined tertiary structure of that target enzyme, and rationally generates new biocatalysts for metabolic engineering of a broad range of metabolic processes.

Comments

This article is published as Sofeo, Naazneen, Jason H. Hart, Brandon Butler, David J. Oliver, Marna D. Yandeau-Nelson, and Basil J. Nikolau. "Altering the substrate specificity of acetyl-CoA synthetase by rational mutagenesis of the carboxylate binding pocket." ACS synthetic biology (2019). doi: 10.1021/acssynbio.9b00008.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections