1-22-2018

Notes on Quasivarieties and Maltsev Products

Clifford Bergman
Iowa State University, cbergman@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs

Part of the Algebra Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/math_pubs/216. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Notes on Quasivarieties and Maltsev Products

Abstract
These notes were prepared for my research group in 2014. These results are not new. Most appear in similar form in [4]. Since neither [4] nor its English translation, [5] is easily accessible, it seemed worthwhile to make these notes available to a wider audience. The notation and terminology follows that of my book, [1].

Disciplines
Algebra | Mathematics

Comments
This is a pre-print, available at: https://faculty.sites.iastate.edu/cbergman/files/inline-files/maltsevprods.pdf.
NOTES ON QUASIVARIETIES
AND MALTSEV PRODUCTS

CLIFFORD BERGMAN

These notes were prepared for my research group in 2014. These results are not new. Most appear in similar form in [4]. Since neither [4] nor its English translation, [5] is easily accessible, it seemed worthwhile to make these notes available to a wider audience. The notation and terminology follows that of my book, [1].

Definition 1. A quasivariety is a class of algebras closed under subalgebra, product, and ultraproduct. Equivalently (see [1, thm 5.4]) a class is a quasivariety iff closed under subalgebra and reduced product.

It is easy to see that the intersection of a family of quasivarieties is again a quasivariety. Thus we can talk about the quasivariety generated by a class of algebras.

Proposition 2. Let \mathcal{K} be a class of algebras. The quasivariety generated by \mathcal{K} is $\text{SPP}_u(\mathcal{K}) = \text{SP}_r(\mathcal{K})$.

A proof can be found in [2, thm. V.2.23] or [1, thm. 5.4].

Corollary 3. Let A be a finite algebra. The quasivariety generated by A is $\text{SP}(A)$.

Definition 4. A quasiidentity is a formula of the form

$$(p_1(x) \approx q_1(x)) \land (p_2(x) \approx q_2(x)) \land \cdots \land (p_k(x) \approx q_k(x)) \rightarrow s(x) \approx t(x)$$

When $k = 0$ we have the identity $s(x) \approx t(x)$, so every identity is a quasiidentity.

Theorem 5. A class of algebras is a quasivariety if and only if it is defined by a set of quasiidentities.

For a proof of Theorem 5 see [2, V.2.25].

Congruence classes play a double role in the context of Maltsev products: as elements of a quotient algebra and as (potential) subalgebras. In order to help keep things straight, let us write $[a]_\theta$ for a congruence class being treated as a subset, and continue to write a/θ for the corresponding element of the quotient algebra.

An element, a, of an algebra, A, is called idempotent if $\{a\}$ forms a subuniverse of A. Put another way, for every basic operation, f, we have

Date: January 22, 2018.
The algebra A is idempotent if every element is idempotent. A class, \mathcal{K}, of algebras is idempotent if every member algebra is idempotent.

Definition 6. Let A and B be quasivarieties. Then

$$A \circ B = \{R : (\exists \theta \in \text{Con}(R)) \ R/\theta \in B \text{ and } (\forall r \in R) [r]_\theta \in \text{Sub}(R) \implies [r]_\theta \in A\}.$$

The class $A \circ B$ is called the Maltsev product of A and B. If C is another quasivariety containing both A and B, we write $A \circ C = (A \circ B) \cap C$. For the extent of this paper, by an A,B-pivot (or just a pivot if the context is clear) we mean a congruence θ satisfying the conditions of Definition 6.

Let $h : A \to B$ be a homomorphism with kernel α. Let $r \in A$. Then $[r]_\alpha$ is a subalgebra of A if and only if $h(r)$ is idempotent in B. This is an immediate consequence of the fact that a direct image of a subalgebra is a subalgebra and the inverse image of a subalgebra is a subalgebra. Another way to say this is

(1) $[r]_\alpha \in \text{Sub}(A) \iff f(r, r, \ldots, r) \alpha r$ for every basic operation f.

Now suppose that $\alpha \leq \beta \in \text{Con}(A)$. Then

(2) $[r]_\alpha \in \text{Sub}(A) \implies (\forall f) f(r, r, \ldots, r) \alpha r \implies (\forall f) f(r, r, \ldots, r) \beta r \implies [r]_\beta \in \text{Sub}(A)$

in which the quantifier on f ranges over all basic operations of A.

Here is another observation.

Lemma 7. Let A be an algebra, $\alpha < \beta$ congruences on A and $r \in A$.

(1) $[r/\alpha]_\beta/\alpha = ([r]_\beta)/\alpha$.

(2) $[r]_\beta \in \text{Sub}(A) \iff [r/\alpha]_\beta/\alpha \in \text{Sub}(A/\alpha)$.

Proof. For (1), $x/\alpha \in [r/\alpha]_\beta/\alpha \iff x/\alpha \equiv r/\alpha \text{ (mod } \beta/\alpha) \iff x \equiv r \text{ (mod } \beta) \iff x \in [r]_\beta \iff x/\alpha \in [r]_\beta/\alpha$.

The second claim follows from equivalence (1) since

$[r]_\beta \in \text{Sub}(A) \iff f(r, r, \ldots, r) \beta r \iff f(r, r, \ldots, r) \beta (r/\alpha)$.

\[\square \]
Let \mathcal{B} be a quasivariety and \mathbf{R} an algebra of the same similarity type as \mathcal{B}. Define

$$
\Lambda^R_B = \{ \theta \in \text{Con}(\mathbf{R}) : \mathbf{R}/\theta \in \mathcal{B} \}
$$

$$
\lambda^R_B = \bigcap \Lambda^R_B.
$$

The congruence λ^R_B is called the **verbal congruence on \mathbf{R} induced by \mathcal{B}**. We leave off the sub- and superscript when the context is clear. Notice that $1_R \in \Lambda$ since \mathcal{B} contains a trivial algebra. Observe also that

$$
\mathbf{R}/\lambda \leq \prod_{\theta \in \Lambda} \mathbf{R}/\theta \in \text{SP}(\mathcal{B}) = \mathcal{B}.
$$

Thus $\lambda \in \Lambda$. In fact the verbal congruence is the smallest congruence on \mathbf{R} whose induced quotient falls into the quasivariety \mathcal{B}.

Now suppose that $\mathbf{R} \in \mathcal{A} \circ \mathcal{B}$. Let θ be any \mathcal{A}, \mathcal{B}-pivot congruence on \mathbf{R}. Since $\mathbf{R}/\theta \in \mathcal{B}$ we have $\lambda^R_B \leq \theta$. Consequently, for every $r \in R$, $[r]_\lambda \subseteq [r]_\theta$. Suppose that $[r]_\lambda \in \text{Sub}(\mathbf{R})$. By implication (2) $[r]_\theta \in \text{Sub}(\mathbf{R})$ hence $[r]_\lambda \subseteq [r]_\theta \in \mathcal{A}$ which implies $[r]_\lambda \in \mathcal{A}$. Thus, in Definition 6, we can always take the \mathcal{A}, \mathcal{B}-pivot to be λ^R_B.

Lemma 8. Let \mathcal{A} and \mathcal{B} be any two quasivarieties. Then $\mathcal{A} \circ \mathcal{B}$ is closed under subalgebra.

Proof. Let $\mathbf{R} \in \mathcal{A} \circ \mathcal{B}$ and let θ be an \mathcal{A}, \mathcal{B}-pivot on \mathbf{R}. Let \mathbf{S} be a subalgebra of \mathbf{R}. We must show $\mathbf{S} \in \mathcal{A} \circ \mathcal{B}$. Define $\psi = \theta|_S$. Then ψ is a congruence on \mathbf{S} and $\mathbf{S}/\psi \leq \mathbf{R}/\theta$, since \mathcal{B} is closed under subs, $\mathbf{S}/\psi \in \mathcal{B}$.

Now let $t \in \mathbf{S}$ and assume $[t]_\psi \in \text{Sub}(\mathbf{S})$. We claim that $[t]_\theta \in \text{Sub}(\mathbf{R})$.

By equivalence (1)

$$
[t]_\psi \in \text{Sub}(\mathbf{S}) \implies f(t, \ldots, t) \psi t \implies f(t, \ldots, t) \theta t \implies [t]_\theta \in \text{Sub}(\mathbf{R}).
$$

Finally, since $[t]_\theta \in \text{Sub}(\mathbf{R})$, $[t]_\theta \in \mathcal{A}$. But \mathcal{A} is closed under subs and $[t]_\psi \subseteq [t]_\theta$, so $[t]_\psi \in \mathcal{A}$ as desired. \qed

Lemma 9. Let \mathcal{A} and \mathcal{B} be any two quasivarieties of finite similarity type. Then $\mathcal{A} \circ \mathcal{B}$ is closed under reduced products. If \mathcal{B} is idempotent, the requirement of finite similarity type can be dropped.

Proof. Let $\mathbf{R}_i \in \mathcal{A} \circ \mathcal{B}$, for $i \in I$, and let \mathcal{F} be a filter on I. We must show $\prod_I \mathbf{R}_i/\eta_\mathcal{F} \in \mathcal{A} \circ \mathcal{B}$. By assumption, for each $i \in I$ we have a pivot congruence, θ_i on \mathbf{R}_i. Let us write $\mathbf{R} = \prod_I \mathbf{R}_i$.

For every $\mathbf{a}, \mathbf{b} \in \mathbf{R}$ define $J(\mathbf{a}, \mathbf{b}) = \{ i \in I : (a_i, b_i) \in \theta_i \}$. Note that $J(\mathbf{a}, \mathbf{b}) \supseteq [\mathbf{a} = \mathbf{b}]$. Let $\psi = \{ (\mathbf{a}, \mathbf{b}) \in R^2 : J(\mathbf{a}, \mathbf{b}) \in \mathcal{F} \}$. It is easy to check that $\psi \in \text{Con}(\mathbf{R})$ and that $\eta_\mathcal{F} \leq \psi$. By the correspondence theorem we have $\mathbf{R}/\psi \cong (\mathbf{R}/\eta_\mathcal{F})/(\psi/\eta_\mathcal{F})$.

Let us write $\overline{\mathbf{R}}$ in place of $\mathbf{R}/\eta_\mathcal{F}$, $\overline{\psi}$ for $\psi/\eta_\mathcal{F}$ and $\overline{\mathbf{r}}$ in place of $\mathbf{r}/\eta_\mathcal{F}$. Then the isomorphism in the previous paragraph can be rewritten as $\mathbf{R}/\psi \cong \overline{\mathbf{R}}/\overline{\psi}$. Our task is to show that $\overline{\mathbf{R}} \in \mathcal{A} \circ \mathcal{B}$. $\overline{\psi}$ will be the pivot congruence on $\overline{\mathbf{R}}$ that makes this happen.
Let \(h \) be the composite of the natural maps \(R \to \prod (R_i/\theta_i) \to \prod (R_i/\theta_i)/\eta_F \). Then \(h \) is surjective and unwinding the definition shows that \(\ker(h) = \psi \). Thus

\[
\mathbf{R}/\overline{\psi} \cong \mathbf{R}/\psi \cong \prod (R_i/\theta_i)/\eta_F \in \mathcal{B}
\]
since \(\mathcal{B} \) is closed under reduced products.

Now let \(\bar{r} \in \mathbf{R} \) and suppose that \(\bar{r}/\overline{\psi} \) is a subuniverse of \(\mathbf{R} \). We must show that \([\bar{r}]_{\overline{\psi}} \in \mathcal{A} \). Let \(\bar{r} \) be an element of \(R \) such that \(\bar{r}/\eta_F = \bar{r} \). Note that \(\bar{r} \) is not unique. By Lemma 7, \([\bar{r}]_{\overline{\psi}} = [\bar{r}]_{\psi}/\eta_F \) and \([\bar{r}]_{\psi} \leq \mathbf{R} \).

Claim: Let \(K = \{ i \in I : [r_i]_{\theta_i} \in \text{Sub}(R_i) \} \). Then \(K \in \mathcal{F} \).

Proof: First, if \(\mathcal{B} \) is idempotent then \(K = I \) which is automatically a member of \(\mathcal{F} \). Now assume that the similarity type consists of finitely many operation symbols \(f_1, \ldots, f_m \). Then for any \(i \in I \), the condition that \([r_i]_{\theta_i} \) be a subuniverse is equivalent to

\[
(f_1(r, r, \ldots, r) \theta_i r) & (f_2(r, r, \ldots, r) \theta_i r) & \cdots & (f_m(r, r, \ldots, r) \theta_i r)
\]

which in turn is equivalent to

\[
i \in J(f_1(r, \ldots, r), r) \cap J(f_2(r, \ldots, r), r) \cap \cdots \cap J(f_m(r, \ldots, r), r).
\]

But \([\bar{r}]_{\overline{\psi}} \) is a subuniverse, so for each \(j \leq m \), \(J(f_j(r, \ldots, r), r) \in \mathcal{F} \). Hence

\[
K = \bigcap_{j=1}^{m} J(f_j(r, \ldots, r), r) \in \mathcal{F}.
\]

Let \(\mathcal{F}' = \{ X \cap K : X \in \mathcal{F} \} \). Then one easily checks that \(\mathcal{F}' \) is a filter on \(K \). We shall show that

\[
[r]_{\psi}/\eta_F \cong \prod_{k \in K} [r_k]_{\theta_k}/\eta_{F'}
\]

This will finish the proof since for \(k \in K \), \([r_k]_{\theta_k} \in \text{Sub}(R_k) \), hence by assumption, \([r_k]_{\theta_k} \in \mathcal{A} \). Thus \([\bar{r}]_{\overline{\psi}} = [\bar{r}]_{\psi}/\eta_F \in \mathcal{P}_r(\mathcal{A}) \subseteq \mathcal{A} \).

Recall that if \(x \in [\bar{r}]_{\overline{\psi}} \) then \(J(x, r) \in \mathcal{F} \), hence \(J(x, r) \cap K \in \mathcal{F}' \). For such an \(x \), define, for each \(k \in K \)

\[
\bar{x}_k = \begin{cases} x_k & \text{if } k \in J(x, r), \\ r_k & \text{otherwise.} \end{cases}
\]

Notice that \(\bar{x} \in \prod_{k \in K} [r_k]_{\theta_k} \) and \(\bar{x} \) agrees with \(x \) in “almost all” components.

Now define the map \(g: [\bar{r}]_{\overline{\psi}} \to \prod_{k \in K} [r_k]_{\theta_k}/\eta_{F'} \) by

\[
g(x) = \bar{x}/\eta_{F'}.
\]

\(g \) is easily seen to be a surjective homomorphism. We can finish the verification of (4) by showing that \(\ker(g) = \eta_F \) on \([\bar{r}]_{\overline{\psi}} \). So let \(x, y \in [\bar{r}]_{\overline{\psi}} \). Then \(x \psi y \) implies \(J(x, y) \in \mathcal{F} \). Let \(Z = \{ k \in K : \bar{x}_k = \bar{y}_k \} \). Then

\[
g(x) = g(y) \iff Z \in \mathcal{F}' \iff K \cap J(x, y) \cap Z \in \mathcal{F}.
\]

But \(K \cap J(x, y) \cap Z \subseteq [x = y] \), so \([x = y] \in \mathcal{F} \), hence \((x, y) \in \eta_F \) as desired. \(\square \)
Theorem 10. The Maltsev product of two quasivarieties of finite type is again a quasivariety. (If the second quasivariety is idempotent, the assumption of finite type can be dropped.)

Lemma 11. If A and B are idempotent quasivarieties, then $A \circ B$ is idempotent.

Proof. Let $R \in A \circ B$ and $r \in R$. We must show that r is idempotent. Let θ be a pivot congruence on R. Since B is idempotent, r/θ is an idempotent element of $R/\theta \in B$, so $[r]_{\theta}$ is a subuniverse of R. Hence $[r]_{\theta} \in A$. Since all members of A are idempotent and $r \in [r]_{\theta}$, r is an idempotent element.

The noteworthy thing about idempotence is that every congruence class is a subuniverse. Thus when both A and B are idempotent, we can ignore the clause $"[r]_{\theta} \in \Sub(R)"$ in the definition of Maltsev product.

Assume that A and B have finite similarity type, or that B is idempotent. Then $C = A \circ B$ is a quasivariety, by Theorem 10. Let $F = F_C(X)$ be a free C-algebra over a set X. Then $F/\lambda_{_{\beta}} \cong F_B(X)$, the free B-algebra on X, [1, thm. 4.28]. Since $\lambda_{_{\beta}}$ can always serve as a pivot, we must have $[r]_{\lambda} \in \Sub(F) \implies [r]_{\lambda} \in A$. Unfortunately, there does not seem to be a natural way to view the algebra $[r]_{\lambda}$ as a homomorphic image of a free algebra on A.

As a rule, the Maltsev product of two varieties need not be a variety (even in the idempotent case). However, if all congruences permute then we do indeed get a variety.

Theorem 12. Let A and B be idempotent subvarieties of a quasivariety C, and suppose that C is congruence-permutable (see [1, pg. 122]). Then $A \circ_C B$ is a variety.

Proof. By Theorem 10, we already know that the Maltsev product is closed under subalgebra and product, so the only thing left to show is closure under homomorphic images. For this let $R \in A \circ C B$ and $\alpha \in \Con(R)$. We must show $R/\alpha \in A \circ_C B$. Let θ be an A,B-pivot on R.

Let $\hat{\theta} = \theta \lor \alpha = \theta \circ \alpha$ (by congruence-permutability). We wish to show that $\hat{\theta}$ is an A,B-pivot on R/α, that is

(5) \((R/\alpha)/(\hat{\theta}/\alpha) \in B\) and

(6) \(r \in R \implies [r/\alpha]_{\hat{\theta}/\alpha} \in A\).

Note that we are tacitly appealing to idempotence in the formulation of (6). The first of these is easy. By the second isomorphism theorem [1, thm. 3.5], \((R/\alpha)/(\hat{\theta}/\alpha) \cong R/\theta \in H(R/\theta) \subset B\).

Now let $r \in R$ and set $A = [r]_{\theta}$. A is a subalgebra of R by idempotence and $A \in A$ by assumption. Define $A^\alpha = \bigcup_{a \in A} [a]_{\alpha}$.

By the third isomorphism theorem [1, thm. 3.8]

\[\mathbf{A}^\alpha/(\alpha|_{\mathbf{A}^\alpha}) \cong \mathbf{A}/\alpha|_{\mathbf{A}} \in \mathcal{A}. \]

However, \(\mathbf{A}^\alpha = [r]_\theta \) since by congruence permutability

\[x \in \mathbf{A}^\alpha \iff (\exists a \in R) \ x \ a \ \theta \ r \iff x \bar{\theta} \ r \iff x \in [r]_{\bar{\theta}}. \]

Finally, to verify (6) we need only observe that \([r/\alpha]_{\bar{\theta}/\alpha} = [r]_{\bar{\theta}/\alpha} = \mathbf{A}^\alpha/\alpha\). \(\Box \)

Example 13 (Li, 2017). Let \(CIB \) denote the variety of all commutative, idempotent binars, and let \(Sq \) be the variety of binars satisfying the identities

\[x^2 \approx x, \quad xy \approx yx, \quad x(xy) \approx y. \]

This is the variety of *squags*. Let \(q(x, y, z) = y(xz) \). Then it is easy to check that \(q \) is a Maltsev term for \(Sq \) [1, thm. 4.64]. Now define the term

\[p(x, y, z) = (x(z(xy))) \cdot (z(x(zy))). \]

Then \(p \) is a Maltsev term for \(Sq \circ Sq \).

Proof. Let \(A \in Sq \circ Sq \). Thus, there is \(\theta \in \text{Con}(A) \) such that \(A/\theta \in Sq \) and every \(x/\theta \in Sq \).

We shall show that \(A \vDash p(x, x, z) \approx z \), i.e., \((x(z(x^2)))(z(x(xz))) \approx z \). Let \(w = x(zx) \). Since \(A/\theta \in Sq \),

\[w/\theta = x/\theta \cdot (z/\theta \cdot x/\theta) = z/\theta \]

thus \(w, z \in [z]_{\theta} \in Sq \). But then (working in \([z]_{\theta} \)) \(p(x, x, z) \approx w(zw) \approx z \) as desired. The other identity, \(p(x, z, z) \approx x \), is similar. \(\Box \)

Thus, by Theorem 12, \(Sq \circ Sq \) is a variety. (Take \(\mathcal{A} = \mathcal{B} = Sq \) and \(\mathcal{C} = Sq \circ Sq \).

It would be interesting to find an equational base for \(Sq \circ Sq \).

References

Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA

E-mail address: cbergman@iastate.edu