The 2004 Iowa Corn Yield Test Report, District 3

Kendall R. Lamkey
Iowa State University

W.H. Vinson
Iowa State University

C.J. Turnbull
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/cornyield

Part of the Agriculture Commons

Recommended Citation
https://lib.dr.iastate.edu/cornyield/237

This Report is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Corn Yield Tests by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The 2004 Iowa Corn Yield Test Report, District 3

Abstract
Results of the Iowa Crop Performance Test-Corn are published to aid Iowa farmers in selecting corn hybrids. This is the 85th consecutive year for the test. These data are first released on the Iowa Crop Improvement Association's homepage at http://www.agron.iastate.edu/icia/ usually around the end of November.

Disciplines
Agriculture

This report is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/cornyield/237
Results of the Iowa Crop Performance Test—Corn are published to aid Iowa farmers in selecting corn hybrids. This is the 85th consecutive year for the test.

These data are first released on the Iowa Crop Improvement Association’s homepage at http://www.agron.iastate.edu/icia/ usually around the end of November. The next released format of these data is in the Iowa Crop Management Database program. A description of this program and an order form can be found at http://extension.agron.iastate.edu/CMD/. A short description of how this program manages these data is provided in the “Other Reports” section of this report.

The final format is the printed version, which is printed and distributed by Iowa Farmer Today in its Dec. 11, 2004 issue. A few days later, the printed reports also are available from county extension offices.

The presentation of data for the hybrids tested does not imply approval or endorsement by the authors or the agencies sponsoring or conducting the test. Entries in Tables 1, 1A, and 2 are designated by brand name and variety.

Use of These Data in Advertisements
Iowa State University and the Iowa Crop Improvement Association desire to maintain the credibility of data from the Iowa Crop Performance Test—Corn. Misuse of these data in advertisements can have a negative effect on the perception of the value of these data. For advertising purposes, brand-to-brand comparisons should not be made unless more than one competitor brand is used in the ad and all entries of competitor brands in a reported table are included in the ad. Advertisement statements by an individual company about the performance of its entries can be made as long as they are accurate statements about the data as published with no reference to other companies’ hybrids. A statement similar to: “See the official Iowa Crop Performance Test—Corn report, PM 660 (1–7) 04, for details,” should be included in the ad.

2004 Procedure
Producers of seed corn and Iowa State University were eligible to enter hybrids in the Iowa Crop Performance Test—Corn. Each producer was allowed a maximum of 12 paid entries per district. All commercial entries had to be available in a quantity of at least 10 bushels of seed.

In 2004, data are reported on 170 entries in this district. Ten of the entries determined to be check hybrids were entered by the Iowa Crop Improvement Association. Survey cards were mailed to a random sample of corn growers in Iowa. Based on the survey results, the 10 hybrids grown on the most acres in the district were classified as check hybrids for the district. The check hybrids (3 and 1) in this report were determined by the 2003 survey. The Iowa Crop Improvement Association entered a maximum of three check hybrids of any given brand. These entries were given priority over the remaining 160 entries made by seed producers.

Each entry was replicated four times in four-row plots at a planting rate of 30,000 kernels per acre at each location. All locations were machine planted. The center two rows of each plot were harvested with a corn combine. No gleanings or dropped ears were included in yield data. A moisture determination was made from each plot and yields were corrected to 15.5 percent moisture. Since 1988, data for protein, oil, and starch percentages have been included in the Iowa Crop Performance Test—Corn reports. Protein, oil, and starch were measured on an Infratec 1225 near-infrared transmittance analyzer calibrated against accepted chemical methods as done by Woodson-Tenant Labs, Des Moines, Iowa. Dr. Charles R. Hurburgh, Jr. of the ISU Department of Agricultural and Biosystems Engineering was responsible for analyzing the samples. Samples for nutrient analysis were collected from one field in each district. Data presented are averages of the four replicated plots in that field. To be consistent with the yield data, the protein, oil, and starch data were corrected to 15.5 percent moisture.

How Information Is Presented
The agronomic data presented are averages of three locations in 2002, 2003, and 2004. Yield in bushels per acre and percentages of moisture, root lodging, stalk lodging, dropped ears, stand, protein, oil, and starch are shown for all entries in 2004 and for those tested in 2002 and 2003 that were in the 2004 test.
Interpretation of Results

Yield differences due to variation in soil, fertility, moisture availability, insect infestation, and diseases, plus any variation due to planting and harvesting techniques, are identified through statistical analysis. The LSD values for yield shown in Tables 1, 1A, and 2 represent, in bushels per acre, the amount of yield variation that could be due to variations in the factors just mentioned. In comparing varieties, yield differences greater than the LSD value can be attributed to genetic differences in the yield potential of these varieties; yield differences less than the LSD value are not statistically different and could have been due to other factors.

Grain moisture levels in Tables 1, 1A, and 2 are indications of maturity and natural drying rate. Maturity of varieties entered generally ranged from short to full season. Yield comparisons should be made among varieties of similar maturity.

It is important to select varieties having stable performance over a range of environmental conditions. High yields for two or more consecutive years, Table 2, indicate stable performance. Also, starting in 2002, to increase the range of environmental conditions reported on in one year, 18 additional tables are provided electronically on the Iowa Crop Improvement Web page that merge data across districts. These tables double, and in some cases even triple, the number of locations reported on for hybrids entered in districts. Supplemental yield and agronomic information about specific varieties may be obtained from seed corn dealers, crop consultants, and from neighbors who have grown these varieties.

The protein, oil, and starch percent data (Tables 1, 1A, and 2) are quality traits important to different end-users of corn. For feed, protein is of primary interest; for wet-mill processing (ethanol and sweeteners), oil and starch content are important. Several firms have begun testing these characteristics on a routine basis. There are now more than 30 Iowa grain elevators with this testing capability.

Whole-grain near-infrared equipment measures composition of unground corn kernels in 1 to 1.5 minutes per sample. The equipment measures moisture simultaneously with composition. Using these instruments, country elevators can test and segregate grain as it is received. Obviously, all compositional factors cannot be high in the same hybrid. The grain market is expanding the production and marketing of certain hybrids for specific uses. This is an important change from the generic commodity approach widely used now.

The economic impact of compositional factors can be significant. Corn protein trades off with other protein sources in many feed rations. At $2.00 per ton for 44 percent protein soybean meal, the value of a 1 percent increase (e.g., from 8 percent to 9 percent) in corn protein is about 12 cents per bushel of corn. Likewise, the additional percent of oil yields about 10 to 14 cents per bushel in increased oil output in a wet processing plant or when substituted for white grease in feed rations. The additional ethanol or sweetener from an extra percent of starch provides 8 to 10 cents per bushel more revenue. Producers feeding livestock are in the best position to capture immediate benefits from these composition data. Country elevators with feed mills also have the ability to capitalize on increased protein in corn. The Iowa Corn Growers Association has prepared a publication to aid growers in using the nutrient data in the Iowa Crop Performance Test—Corn reports: Nutrient Content and Feeding Value of Iowa Corn, Iowa Corn Growers Association, Des Moines, Iowa, 30265.

Hybrids with similar yields and agronomic characteristics may not be identical in corn composition. Therefore, feed costs can be reduced by selecting higher protein hybrids from a group with similar yield potential. Weather and soil conditions affect composition, but the relative ranking of hybrids does not change greatly. A higher protein hybrid will be higher than average regardless of environmental conditions that raise or lower the averages. The protein percentages reported are measures of crude protein and may not give an accurate indication of feed value if feed rations are balanced on individual amino acids rather than crude protein content.

2004 Field Data

The District 3 test was planted on farms operated by John Schott near Pocahontas in Pocahontas County, Richard Bertram near Holland in Grundy County, and Dave Broghammer near Manchester in Delaware County. Field data are presented in Table A.

<table>
<thead>
<tr>
<th>Table A. Field Data</th>
<th>Schott Farm</th>
<th>Clarion Webster loam</th>
<th>Bertram Farm*</th>
<th>Tama-Muscatine</th>
<th>Broghammer Farm</th>
<th>Keosauqua loam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer applied, lb.</td>
<td>N</td>
<td>P2O5</td>
<td>K2O</td>
<td>N</td>
<td>P2O5</td>
<td>K2O</td>
</tr>
<tr>
<td>Fitted down Preplant</td>
<td>160</td>
<td>80</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Preplant Starter</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>80</td>
<td>100</td>
<td>154</td>
<td>68</td>
<td>81</td>
</tr>
<tr>
<td>2003 crop</td>
<td>Soybeans</td>
<td>Soybeans</td>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row width</td>
<td>30 inches</td>
<td>30 inches</td>
<td>30 inches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting date</td>
<td>May 1</td>
<td>April 29</td>
<td>April 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest date</td>
<td>Oct 8</td>
<td>Nov 3-5</td>
<td>Oct 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average yield</td>
<td>205 bua</td>
<td>214 bua</td>
<td>204 bua</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Field sampled for protein, oil, and starch percentage data.

Other Reports

Separate reports are available for each district shown in Table 1. A limited supply of these publications is available at your county extension office or from Extension Distribution Center, 119 Printing and Publications Building, Iowa State University, Ames, Iowa 50011. Also, these data are available along with a hybrid selection program as a part of the Iowa Corn Management Database program. Along with all of the information as it appears in these written reports, the section of the Iowa Crop Management Database program that uses these data allows farmers to insert their own drying and shrink costs, expected price of corn, and final moisture percentage after drying. Using these specific criteria, the program calculates an adjusted economic value for each hybrid in the test. Farmers can then determine which hybrids might best fit their own production practices and provide the most profit. The computer program also can sort the hybrids by yield, moisture, adjusted value, root lodging, stalk lodging, dropped ears, protein, oil, starch, or brand and then print the data as sorted. It will also allow the user to tag selected hybrids and then list those selected hybrids as a new table for ease of viewing. A Pentium 1 computer or higher running Windows 95 or newer with a CD ROM drive and 32 megabytes of hard disk space are required to run the program. The cost of the program is a one-time purchase of $100. Future years' data can be downloaded from the Web at no charge. If the user cannot access the Web to download the new data, the price will be $25 for all seven districts' data. Order forms and a description of the program are available from Agribusiness Education Programs, telephone 515-294-6429 and on the Web at http://extension.agron.iastate.edu/MD/.

The 2004 Iowa Crop Performance Test—Corn

PM 660 1 04 District 1
PM 660 2 04 District 2
PM 660 3 04 District 3
PM 660 4 04 District 4
PM 660 5 04 District 5
PM 660 6 04 District 6
PM 660 7 04 District 7

Cooperating Organizations

Iowa Crop Improvement Association
Agriculture & Home Economics Experiment Station
Iowa State University Extension
Iowa Corn Promotion Board
U.S. Department of Agriculture

And justice for all . . .

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Many materials can be made available in alternative formats for ADA clients. To file a complaint of discrimination, write USDA, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
</tr>
<tr>
<td>Crop</td>
<td></td>
</tr>
</tbody>
</table>

It is becoming more difficult for the researcher to decide which hybrids may have improved performance across several locations. The year-S.O. data is becoming more important in these decisions. Unfortunately, the performance of the year is correlated with the PI. Therefore, the researcher is forced to think of ways to reduce the SI and make it easier for them to decide which hybrids to use. To help them decide which hybrids to use, they can perform a new analysis of the data. The analysis will be performed using the following method:

1. Calculate the mean performance for each PI across all years.
2. Calculate the standard deviation of the mean performance for each PI across all years.
3. Calculate the correlation coefficient between the year-S.O. data and the PI.
4. If the correlation coefficient is high, then the researcher should consider using the year-S.O. data to help them decide which hybrids to use.

The researchers then perform the analysis and see that the correlation coefficient is high. Therefore, they begin to use the year-S.O. data to help them decide which hybrids to use. The researchers then begin to think about how they can improve the performance of the hybrids. They then perform a new analysis of the data and see that the performance of the hybrids has improved. Therefore, the researchers can use the improved hybrids to help them improve the performance of the crops.
<table>
<thead>
<tr>
<th>Variety</th>
<th>3-Year Protein LDS</th>
<th>2-Year Oil LDS</th>
<th>3-Year Hybrid LDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDi</td>
<td>1057YGC8</td>
<td>193</td>
<td>185.5</td>
</tr>
<tr>
<td>Jung</td>
<td>6507YGC8</td>
<td>187</td>
<td>186.0</td>
</tr>
<tr>
<td>#Hybrid</td>
<td>1257</td>
<td>189</td>
<td>187.7</td>
</tr>
<tr>
<td>#Combi1</td>
<td>C402Y1</td>
<td>154</td>
<td>173.0</td>
</tr>
<tr>
<td>#Pioneer</td>
<td>26993</td>
<td>196</td>
<td>174.4</td>
</tr>
<tr>
<td>#DEKALB</td>
<td>DAC5S-32YGC8</td>
<td>191</td>
<td>174.0</td>
</tr>
<tr>
<td>#DEKALB</td>
<td>W4928</td>
<td>182</td>
<td>177.6</td>
</tr>
<tr>
<td>#Tripler</td>
<td>2490</td>
<td>185</td>
<td>177.0</td>
</tr>
<tr>
<td>#Midli</td>
<td>W12156</td>
<td>186</td>
<td>181.2</td>
</tr>
<tr>
<td>#Midli</td>
<td>1246</td>
<td>192</td>
<td>189.3</td>
</tr>
<tr>
<td>#Midli</td>
<td>M09-08</td>
<td>194</td>
<td>187.5</td>
</tr>
<tr>
<td>#DEKALB</td>
<td>DAC9T-34VGC8</td>
<td>195</td>
<td>187.0</td>
</tr>
<tr>
<td>#HighCyc</td>
<td>HCT727YGCB</td>
<td>197</td>
<td>185.8</td>
</tr>
<tr>
<td>Pfister</td>
<td>132561</td>
<td>192</td>
<td>185.0</td>
</tr>
<tr>
<td>#DEKALB</td>
<td>DAC5S-79YGC8</td>
<td>200</td>
<td>187.0</td>
</tr>
<tr>
<td>#Source</td>
<td>5910YGCB</td>
<td>195</td>
<td>185.1</td>
</tr>
<tr>
<td>#Source</td>
<td>4140</td>
<td>193</td>
<td>191.8</td>
</tr>
<tr>
<td>#Source</td>
<td>C3420-69VYCB</td>
<td>209</td>
<td>193.0</td>
</tr>
<tr>
<td>Cornbelt</td>
<td>C5791</td>
<td>195</td>
<td>193.0</td>
</tr>
<tr>
<td>#Source</td>
<td>C68070</td>
<td>198</td>
<td>193.0</td>
</tr>
<tr>
<td>#Source</td>
<td>31178</td>
<td>198</td>
<td>194.0</td>
</tr>
<tr>
<td>#Source</td>
<td>82911YGCB</td>
<td>202</td>
<td>194.0</td>
</tr>
<tr>
<td>#Source</td>
<td>M33104</td>
<td>205</td>
<td>194.0</td>
</tr>
<tr>
<td>#Source</td>
<td>C655710</td>
<td>202</td>
<td>197.0</td>
</tr>
<tr>
<td>#Source</td>
<td>3311180</td>
<td>209</td>
<td>198.0</td>
</tr>
<tr>
<td>#Source</td>
<td>D2250</td>
<td>198</td>
<td>198.0</td>
</tr>
<tr>
<td>#Source</td>
<td>HCT749YGCB</td>
<td>202</td>
<td>198.0</td>
</tr>
<tr>
<td>#Source</td>
<td>306811YGCB</td>
<td>207</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>C3275</td>
<td>207</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>39111YGCB</td>
<td>195</td>
<td>201.0</td>
</tr>
<tr>
<td>#Source</td>
<td>281111YGCB</td>
<td>201</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>331211YGCB</td>
<td>209</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>E3450</td>
<td>186</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>D3996</td>
<td>205</td>
<td>200.0</td>
</tr>
<tr>
<td>#Source</td>
<td>306811YGCB</td>
<td>198</td>
<td>201.0</td>
</tr>
<tr>
<td>#Source</td>
<td>D5468</td>
<td>198</td>
<td>201.0</td>
</tr>
<tr>
<td>#Source</td>
<td>351611YGCB</td>
<td>196</td>
<td>202.0</td>
</tr>
<tr>
<td>#Source</td>
<td>E38681YGCB</td>
<td>197</td>
<td>202.0</td>
</tr>
</tbody>
</table>

Averages of All Entries

- SDi: 105.5 ± 19.2 ± 19.1 ± 3.1 ± 1.5 ± 1.7 ± 0.1 ± 0.0 ± 93.6 ± 93.2 ± 7.5 ± 7.5 ± 3.6 ± 3.6 ± 60.8 ± 60.4
- jung: 120.5 ± 19.0 ± 19.1 ± 3.1 ± 1.5 ± 1.9 ± 0.1 ± 0.0 ± 94.1 ± 94.4 ± 7.7 ± 7.7 ± 3.6 ± 3.6 ± 60.5 ± 60.3

Average of All Entries

- SDi: 105.5 ± 19.2 ± 19.1 ± 3.1 ± 1.5 ± 1.9 ± 0.1 ± 0.0 ± 94.1 ± 94.4 ± 7.7 ± 7.7 ± 3.6 ± 3.6 ± 60.5 ± 60.3
- jung: 120.5 ± 19.0 ± 19.1 ± 3.1 ± 1.5 ± 1.9 ± 0.1 ± 0.0 ± 94.1 ± 94.4 ± 7.7 ± 7.7 ± 3.6 ± 3.6 ± 60.5 ± 60.3
<table>
<thead>
<tr>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designations Identifying Brands in the Test</td>
</tr>
</tbody>
</table>

- **[As Seeds]**
 - Ar. Smith, Chader, IA 52043
 - 703 353 1125
- **[Acorn Seed]**
 - Acorn Seed, Dyer, IA 50649
 - 319 999 2291
- **[Ag Source]**
 - Ag Source Seeds, Nevada, IA 52069
 - 319 384 0820, www.AgSourceseeds.com
- **[Channel Bic Corp.]**
 - Channel Bic Corp., Kenosha, WI 53141
 - 262 868 6508
- **[Cora Bels]**
 - Cora Bels Hybrids, St. Marys, OH 45885
 - 800 977 9381, www.coraehybrid.com
- **[Cornhusk]**
 - Cornhusk Seed, Selber, IA 53031
 - 608 717 3455, www.cornhuskseed.com
- **[Cowan]**
 - Crown Hybrid Co., Kenosha, WI 53141
 - 608 274 6122, www.stevylhyb.com
- **[Dayland]**
 - Dayland Seed, Clinton, WI 53525-0726
 - 608 760 2237, www.daylandseed.com
- **[*DERAL]**
 - Memorex, Carbondale, CO 81629
 - 970 754 4009, www.memorex.com
- **[Epley]**
 - Epley Brothers Hybrid, Shell Rock, IA 50372
 - 319 881 9235, www.epleyseed.com
- **[Farm]**
 - Farm Seed, Rockwell, IA 52329
 - 319 373 0596
- **[Golden Harvest]**
 - J.C. Robinson Seed, Waterloo, IA 50702
 - 319 293 0301
- **[Golden Harvest]**
 - Golden Harvest Seeds, Herrin, IL 62948
 - 800 655 7115, www.goldenhvseeds.com
- **[Golden Harvest]**
 - Golden Harvest Co., Cordova, IL 62416
 - 800 611 1186, www.goldenhvseeds.com
- **[HighCycle by Pan]**
 - Fantasia, Fernando, NC 28734-2505
 - 919 721 1910, www.fantasiaseeds.com
- **[HighCycle by Twyn]**
 - Twyn, Lovington, WA 98854
 - 360 453 9384, www.twyn.com
- **[Highkeep Hybr]**
 - Highkeep Hybrids, Pella, IA 50572
 - 319 275 3427
- **[Jetten]**
 - Jetten Bros. Seed, LLC, Lake City, IA 51535
 - 712 544 0801
- **[Joffeck]**
 - Joffeck Hybrid Corn Co., Lake View, IA 51030-0791
 - 712 761 0231
- **[Kruge S]**
 - Kruge Seed, Dike, IA 50539
 - 712 721 2721
- **[KHC/Challenger]**
 - KHC/Challenger Seed, Dike, IA 50539
 - 712 294 9381
- **[M&W Corn]**
 - M&W Corn, Grafton, IA 50134
 - 641 275 6223, www.miwnecorn.com
- **[Mead]**
 - Mead Seed Co., Perry, IA 50230
 - 319 735 3722, www.meadseed.com
- **[Menckhans]**
 - Menckhans Seeds, Waseca, MN 56093
 - 319 837 0511, Etna 2311, www.menckhans.com
- **[Muckler]**
 - Muckler Seed, Council Bluffs, IA 51501
 - 319 255 3885
- **[NK Seed]**
 - Nrup Seeds, Arden, IA 50310
 - 712 620 3403, www.nrup.com
- **[Planter]**
 - Planter Hybrid Corn, El Paso, IL 61738
 - 218 927 6000, www.planterhybridd.com
- **[Prostar]**
 - Prostar Hi-Bred Seed, Johnson, IA 50770
- **[Prostar]**
 - Prostar Hi-Bred Seed Inc., Johnson, IA 50770-0948
 - 715 233 9983, www.prostar.com
- **[PS Genese]**
 - PS Genese Seed, Griswold, IA 50634
 - 712 495 1036, Ext 540
- **[Rader]**
 - Rader Seed, Okahaam, IA 52237
 - 712 373 9493, www.raderseed.com
- **[Renk]**
 - Renk Seed, Vinton, IA 52341
 - 712 268 9961, www.renks.org
- **[Soll]**
 - Soll Seed Service Inc., Marcus, IA 51239
 - 712 375 4705, www.sollseed.com
- **[Tnster]**
 - Tnster Seed, Urbana, IL 62919
 - 1 800 862 2710, www.tnster.com
- **[Wyffel]**
 - Wyffel Hybrids, Geuimac, IL 62919
 - 800 668 9583, www.wyffel.com

Companies work into or more check hybrids entered by the Iowa Crop Improvement Association.