Genetic algorithm for parameter and scale selection to predict soil moisture patterns

Thumbnail Image
Date
2008-06-01
Authors
Yang, Lingyuan
Kaleita, Amy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kaleita, Amy
Department Chair
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Soil moisture is a critical component of hydrological processes, and its spatio-temporal distribution depends on many geographical factors (such as elevation, slope, and aspect, etc.). Each of the factors is likely influential over a different scale and to a different degree. Near-surface soil moisture data were collected across a working 10-ha field southwest of Ames, IA in growing seasons of 2004 to 2007. A genetic algorithm is developed to compare geographical factors to the moisture patterns over a range of scales. The genetic algorithm will develop a model in which each factor is computed over a different scale for use in prediction of reference variable. Optimized scales for each parameter are arrived at through successive generations, including crossover and mutation of this evolutionary algorithm. Using this approach, not only are the primary influential relationships uncovered, but the most appropriate scale for comparison to moisture pattern is identified. The results of this analysis can be used to predict the spatio-temporal patterns of soil moisture across a region a priori.

Comments

This is an ASABE Meeting Presentation, Paper No. 083733.

Description
Keywords
Citation
DOI
Source
Copyright
Tue Jan 01 00:00:00 UTC 2008