11-13-2018

Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis

Will Landau
Iowa State University

Jarad Niemi
Iowa State University, niemi@iastate.edu

Dan Nettleton
Iowa State University, dnett@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/stat_las_pubs

Part of the Agriculture Commons, Genetics Commons, Statistical Methodology Commons, and the Statistical Models Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/stat_las_pubs/247. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Statistics at Iowa State University Digital Repository. It has been accepted for inclusion in Statistics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis

Abstract
Heterosis, or hybrid vigor, is the enhancement of the phenotype of hybrid progeny relative to their inbred parents. Heterosis is extensively used in agriculture, and the underlying mechanisms are unclear. To investigate the molecular basis of phenotypic heterosis, researchers search tens of thousands of genes for heterosis with respect to expression in the transcriptome. Difficulty arises in the assessment of heterosis due to composite null hypotheses and nonuniform distributions for p-values under these null hypotheses. Thus, we develop a general hierarchical model for count data and a fully Bayesian analysis in which an efficient parallelized Markov chain Monte Carlo algorithm ameliorates the computational burden. We use our method to detect gene expression heterosis in a two-hybrid plant-breeding scenario, both in a real RNA-seq maize dataset and in simulation studies. In the simulation studies, we show our method has well-calibrated posterior probabilities and credible intervals when the model assumed in analysis matches the model used to simulate the data. Although model misspecification can adversely affect calibration, the methodology is still able to accurately rank genes. Finally, we show that hyperparameter posteriors are extremely narrow and an empirical Bayes (eBayes) approach based on posterior means from the fully Bayesian analysis provides virtually equivalent posterior probabilities, credible intervals, and gene rankings relative to the fully Bayesian solution. This evidence of equivalence provides support for the use of eBayes procedures in RNA-seq data analysis if accurate hyperparameter estimates can be obtained. Supplementary materials for this article are available online.

Keywords
CUDA, Empirical Bayes, Graphics processing unit, Hierarchical model, Hybrid vigor, Negative-binomial

Disciplines
Agriculture | Genetics | Statistical Methodology | Statistical Models

Comments
Fully Bayesian analysis of RNA-seq counts for the detection of gene expression heterosis

Will Landau, Jarad Niemi,* and Dan Nettleton
Department of Statistics, Iowa State University

September 28, 2017

Abstract

Heterosis, or hybrid vigor, is the enhancement of the phenotype of hybrid progeny relative to their inbred parents. Heterosis is extensively used in agriculture, and the underlying mechanisms are unclear. To investigate the molecular basis of phenotypic heterosis, researchers search tens of thousands of genes for heterosis with respect to expression in the transcriptome. Difficulty arises in the assessment of heterosis due to composite null hypotheses and non-uniform distributions for p-values under these null hypotheses. Thus, we develop a general hierarchical model for count data and a fully Bayesian analysis in which an efficient parallelized Markov chain Monte Carlo algorithm ameliorates the computational burden. We use our method to detect gene expression heterosis in a two-hybrid plant-breeding scenario, both in a real RNA-seq maize dataset and in simulation studies. In the simulation studies, we show our method has well-calibrated posterior probabilities and credible intervals when the model assumed in analysis matches the model used to simulate the data. Although model misspecification can adversely affect calibration, the methodology is still able to accurately rank genes. Finally, we show that hyperparameter posteriors are extremely narrow and an empirical Bayes (eBayes) approach based on posterior means from the fully Bayesian analysis provides virtually equivalent posterior probabilities, credible intervals, and gene rankings relative to the fully Bayesian solution. This evidence of equivalence provides support for the use of eBayes procedures in RNA-seq data analysis if accurate hyperparameter estimates are obtained.

Keywords: hierarchical model, graphics processing unit, CUDA, negative-binomial, empirical Bayes, hybrid vigor

*Contact the corresponding author at niemi@iastate.edu.
1 Introduction

Heterosis, or hybrid vigor, is the biological phenomenon in which hybrid progeny surpasses each of its inbred parents with respect to some characteristic. Ever since Darwin (1876) documented heterosis, the term has usually referred to traits at the phenotypic level, and phenotypic heterosis has long been used to enhance crops and livestock. For example, one well-known maize hybrid described by Hallauer & Miranda (1981) and Hallauer et al. (2010) has taller, faster-growing stalks with more grain yield than either inbred parent. Similar breeding techniques have used heterosis to improve rice (Yu et al. 1997), alfalfa (Riday & Brummer 2002), tomatoes (Krieger et al. 2010), and fish (Wohlfarth 1993). However, the underlying genomic mechanisms of phenotypic heterosis remain unclear (Coors & Pandey 1999, Lippman & Zamir 2007).

Researchers have hypothesized that the enhanced expression of one or more genes in the hybrid relative to both inbred parents, which we call gene expression heterosis, may help account for phenotypic heterosis (Swanson-Wagner et al. 2006, Springer & Stupar 2007). Gene expression heterosis has been measured with a variety of experimental platforms, including microarray and its successor, RNA-sequencing (RNA-seq) (Wang et al. 2006, 2010, Oshlack et al. 2010). Both platforms measure the relative expression levels of genes in organisms across multiple groups or experimental conditions. Relative to microarray, RNA-seq has less noise and higher throughput, among other advantages (Landau & Liu 2013).

However, both microarray and RNA-seq present serious statistical challenges. Since a large number of expressed genes are assayed only a handful of times each, the data analysis is a low-sample-size multiple testing scenario prone to frequent false discoveries. With the additional difficulty of composite null hypotheses for gene expression heterosis detection (Ji et al. 2014, Niemi et al. 2015), assessing the false discovery rate (FDR) in the heterosis problem is difficult. In multiple testing scenarios with composite null hypotheses, the distribution of the null p-values is typically not uniform (Bayarri & Berger 2000, Robins et al. 2000, Sun & McLain 2012, Dickhaus 2013) which violates a key assumption of many ubiquitous FDR control procedures (Benjamini & Hochberg 1995, Storey 2003, Meinhausen & Rice 2006, Dudoit & Laan 2008). Some techniques addressing composite null hypotheses
generate null p-values that are less likely to violate the uniformity assumption (Bayarri & Berger 2000, Romano & Shaikh 2006, Cabras 2010, Chi 2010, Dickhaus 2013), but they do not entirely remove the assumption itself.

To mitigate these statistical challenges in microarrays, Ji et al. (2014) built a normal hierarchical model to borrow information across genes, improve parameter estimation, and provide a data-based Ockham’s razor effect to control the false discovery rate. Building on the work of Ji et al., Niemi et al. (2015) construct a negative-binomial hierarchical model for use in RNA-seq experiments. Both approaches utilize an empirical Bayes (eBayes) procedure for parameter estimation and rely on the resulting conditional posterior probabilities of the composite null and alternative hypotheses to identify genes with expression heterosis. They justify the eBayes procedure as an approximation to a fully Bayesian analysis based on asymptotic convergence of the posterior, but provide no supporting evidence for this claim. Nonetheless, eBayes procedures are becoming increasingly popular in statistical genomics (Hardcastle & Kelly 2010, Wu et al. 2012, Leng et al. 2013, Lithio & Nettleton 2015).

Presumably the use of eBayes rather than fully Bayesian procedures is due to the computational difficulties involved in estimating the hundreds of thousands of parameters in these hierarchical models. In our experience, the stalwart Markov chain Monte Carlo (MCMC) approaches, as implemented in software such as WinBUGS (Lunn et al. 2000), OpenBugs (Lunn et al. 2009), JAGS (Plummer et al. 2003), Stan (Stan Development Team 2014), and NIMBLE (de Valpine et al. 2016), are computationally intractable for models of this size. Fortunately new MCMC approaches, based on parallelization on graphics processing units, allow for fully Bayesian analyses of these models in reasonable time frames (Landau & Niemi 2016a). In this article, we propose a fully Bayesian analysis of a hierarchical regression model for count data, compare this approach to two best-case-scenario eBayes procedures, and analyze a two-hybrid experiment in maize to identify genes with gene expression heterosis.

In Section 2, we introduce the motivating two-hybrid maize heterosis RNA-seq dataset. Section 3 presents an overdispersed, hierarchical RNA-seq model and describes the fully Bayesian estimation procedure. Section 4 expounds simulation studies based on a two-
hybrid plant-breeding scenario to assess our fully Bayesian approach in terms of estimation, inference, and heterosis gene detection, and we compare our method to two best-case-scenario empirical Bayes counterparts. Finally, Section 5 details our analysis of the maize dataset.

2 Two-hybrid plant-breeding experiment for heterosis gene detection

We focus on the RNA-seq dataset from Paschold et al. (2012), which contains read counts of $G = 39656$ genes on $N = 16$ biological replicates divided evenly among four genetic varieties. In the underlying experiment, multiple maize seedlings from each variety were germinated according to the procedure by Hoecker et al. (2006). Three and a half days after germination, the primary roots of the seedlings were harvested. Within each variety, four pools of primary roots served as four biological replicates. Following the procedure by Winz & Baldwin (2001), the sixteen collections of roots were ground under liquid nitrogen, and the RNA was isolated. Complementary DNA (cDNA) fragments were then synthesized in preparation for sequencing. Next the cDNA from the replicates was divided between two flow cells (i.e. removable compartments for genetic material in the RNA-sequencing platform) as identified in Supplementary Table S1. The two flow cells were placed into an Illumina Genome Analyzer II, where the cDNA fragments were read, amplified, and counted. The reads from the sequencing platform were mapped to the B73 reference genome (RefGen_v2) (Schnable et al. 2009), and the preprocessed and amplified read counts for each gene and biological replicate were collected into a data table. The resulting $G \times N$ table of read counts is provided in Table S1.

The varieties in the Paschold et al. data are inbred variety B73, inbred variety Mo17, B73×Mo17 (a first-generation hybrid created by pollinating B73 with Mo17), and Mo17×B73 (a first-generation hybrid created by pollinating Mo17 with B73). This is a special case of a more general plant hybrid scenario where there are two parent varieties and one first-generation hybrid variety for each direction of pollination. For the general scenario, we shall use P1, P2, H12, and H21 for the parents and the first-generation hybrids, respec-
tively. For the Paschold et al. dataset, P1 is B73, P2 is Mo17, H12 is B73 × Mo17, and H21 is Mo17 × B73.

A major goal is to identify genes that have heterosis with respect to their expression levels: that is, those with significantly higher (in the case of high-parent heterosis) or significantly lower (low-parent heterosis) expression levels in one or both hybrids relative to their parents. For each of the high-parent and low-parent cases, we are interested in heterosis with respect to H12, H21, and the log-scale mean expression level of H12 and H21 together. Table 1 provides the six types of gene expression heterosis parameterized in terms of log-scale mean expression levels μ_{gv} specific to gene g and variety v. (The third column of Table 1 is discussed in Section 4.) “High (low)-parent H” indicates hybrid H has higher (lower) mean expression than both parents while “high (low)-parent mean” indicates that the average of the hybrids is higher (lower) than both parents. Our major objective is to provide a measure of the strength of evidence for each kind of heterosis for each gene which we accomplish using posterior probabilities of heterosis under the model in Section 3.1.

Table 1: Heterosis hypotheses for a two-parent (P1 and P2), two-hybrid (H12 and H21) gene expression experiment represented in terms of the log-scale mean expression μ_{gv} for gene g and variety v and in terms of the parameters $\beta_{g\ell}$ corresponding to columns $\ell = 1, \ldots, L = 5$ of the model matrix X in Equation (1) of Section 4.

<table>
<thead>
<tr>
<th>Heterosis</th>
<th>With log-scale group means</th>
<th>With $\beta_{g\ell}$ parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>high-parent H12</td>
<td>$\mu_{g,H12} > \max(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$2\beta_{g2} + \beta_{g4}, \quad 2\beta_{g3} + \beta_{g4} > 0$</td>
</tr>
<tr>
<td>low-parent H12</td>
<td>$\mu_{g,H12} < \min(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$-2\beta_{g2} - \beta_{g4}, \quad -2\beta_{g3} - \beta_{g4} > 0$</td>
</tr>
<tr>
<td>high-parent H21</td>
<td>$\mu_{g,H21} > \max(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$2\beta_{g2} - \beta_{g4}, \quad 2\beta_{g3} - \beta_{g4} > 0$</td>
</tr>
<tr>
<td>low-parent H21</td>
<td>$\mu_{g,H21} < \min(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$-2\beta_{g2} + \beta_{g4}, \quad 2\beta_{g3} + \beta_{g4} > 0$</td>
</tr>
<tr>
<td>high-parent mean</td>
<td>$\mu_{g,H12} + \mu_{g,H21} > 2\max(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$\beta_{g2}, \quad \beta_{g3} > 0$</td>
</tr>
<tr>
<td>low-parent mean</td>
<td>$\mu_{g,H12} + \mu_{g,H21} < 2\min(\mu_{g,P1}, \mu_{g,P2})$</td>
<td>$-\beta_{g2}, -\beta_{g3} > 0$</td>
</tr>
</tbody>
</table>

The complement of each of the heterosis hypotheses in Table 1 is a composite null hypothesis. For example, the “no high-parent H12 heterosis” null hypothesis for row 1 of
Table 1 can be written as

\[\mu_{g,P1} \leq \mu_{g,H12} \leq \mu_{g,P2} \text{ or } \mu_{g,P2} \leq \mu_{g,H12} \leq \mu_{g,P1} \]

or (equivalently, in terms of the \(\beta_{g\ell} \) parameters) as

\[2\beta_{g2} + \beta_{g4} \leq 0 \text{ or } 2\beta_{g3} + \beta_{g4} \leq 0. \]

Currently available software for the analysis of RNA-seq data allows for the testing of point null hypotheses concerning single parameters or linear combinations of parameters but does not (to our knowledge) provide tests for complex composite nulls like those encountered in the search for gene expression heterosis. Even if existing RNA-seq analysis software were modified to provide p-values for tests of composite null hypotheses, the difficulties in multiple testing described in Section 1 would limit their usefulness. Thus, new methodology is needed.

3 Fully Bayesian methodology

To address the strength of evidence for the various types of heterosis, we build a hierarchical regression model for count data capable of borrowing information across genes and accounting for gene-specific overdispersion (Niemi et al. 2015). We perform a fully Bayesian analysis based on vague proper priors using a slice-sampling-within-Gibbs Markov chain Monte Carlo (MCMC) algorithm that utilizes general-purpose graphics processing units (GPUs) for efficient computation (Landau & Niemi 2016a).

3.1 Hierarchical model for RNA-seq

Let \(y_{gn} \) be the RNA-seq count (i.e. the relative expression level) of gene \(g \) \((g = 1, \ldots, G)\) in replicate \(n \) \((n = 1, \ldots, N)\), and let \(y \) be the \(G \times N \) matrix of the \(y_{gn} \)'s. Let \(X \) be an \(N \times L \) model matrix that connects the \(N \) samples (i.e. RNA-seq replicates) to the genotypes, blocking factors, etc. Taking \(X_n \) to be the \(n \)'th row of \(X \), we let \(y_{gn} \overset{\text{ind}}{\sim} \text{Poisson} (\exp (h_n + \varepsilon_{gn} + X_n \beta_g)) \). The \(h_n \)'s are computed from \(y \) (as explained in Section 3.2) and are treated as constants that play the role of normalization factors in
other RNA-seq models, taking into account sample-specific nuisance effects such as sequencing depth (Si & Liu 2013, Anders & Huber 2010, Robinson & Oshlack 2010). The ε_{gn} parameters account for overdispersion, and we assume $\varepsilon_{gn} | \gamma_g \overset{ind}{\sim} \text{Normal}(0, \gamma_g)$ such that the γ_g parameters are analogous to the gene-specific negative-binomial dispersion parameters widespread in other RNA-seq data analysis methodology (Landau & Liu 2013). We assumed $1/\gamma_g \overset{ind}{\sim} \text{Gamma}(\nu/2, \nu \tau/2)$, parameterized such that $E[1/\gamma_g] = 1/\tau$.

The gene-specific vector-valued parameters β_g account for the effects on gene expression of the experimental variables of interest. Aside from the normalization factor h_n, we interpret $X_n \beta_g$ to be the log-scale mean expression level of gene g in RNA-seq sample n. To borrow information across genes, we assign $\beta_{g\ell} | \theta_\ell, \sigma_\ell^2 \overset{ind}{\sim} \text{Normal}(\theta_\ell, \sigma_\ell^2)$ for each ℓ.

This model is similar to negative binomial regression models from other RNA-seq data analyses (McCarthy et al. 2012, Wu et al. 2012), with one difference being that we mix Poisson distributions over log-normal rather than gamma distributions. This choice is made primarily to ease computational implementation by reducing the number of distinct types of full conditionals. Due to the similarity between the gamma and log-normal distributions, we suspect that similar results would be obtained if gamma distributions had been used.

3.2 Inference on gene-specific parameters and heterosis probabilities

To perform Bayesian analyses, we assigned independent priors for the hyperparameters. Specifically $\tau \sim \text{Gamma}(a, b)$, $\nu \sim \text{Uniform}(0, d)$, $\theta_\ell \overset{ind}{\sim} \text{Normal}(0, c_\ell^2)$, and $\sigma_\ell^2 \overset{ind}{\sim} \text{Uniform}(0, s_\ell)$ for $\ell = 1, \ldots, L$ with the values for Roman letters chosen to provide vague, relatively uninformative priors on these hyperparameters. Before parameter estimation, we calculated the log-scale replicate-specific normalization constants h_n as follows. We first calculated log-scale counts $w_{gn} = \log(y_{gn} + 0.5 \cdot I(y_{gn} = 0))$, replicate-specific means $\bar{w}_n = \frac{1}{G} \sum_{g=1}^{G} w_{gn}$, and the grand mean $\bar{w} = \frac{1}{N} \sum_{n=1}^{N} \bar{w}_n$. Afterwards, we set $h_n = \bar{w}_n - \bar{w}$ for $n = 1, \ldots, N$.

To estimate the full joint posterior distribution of the parameters, we used the parallelized slice-sampling-within-Gibbs MCMC algorithm described in Landau & Niemi (2016a). Without parallel computing, the computational burdens of the MCMC would be heavy, with the elapsed runtime for each dataset stretching over multiple days (see Section 5).
However, with the strategy we employed, which uses massively parallel computing that takes advantage of general-purpose graphics processing units (GPUs), we analyzed typical-sized RNA-seq data in just a few hours per dataset. The algorithm accelerates MCMC computation by executing conditionally independent Gibbs steps in parallel and using parallelized reductions to compute the full conditional distributions of the hyperparameters. Efficiency is increased by reducing the data transferred from GPU to CPU, and thus we limited posterior samples to all hyperparameters and a random subset of gene-specific parameters. For each parameter ψ, we also record $\overline{\psi} = \frac{1}{M} \sum_{m=1}^{M} \psi_{g}^{(m)}$ and $\overline{\psi^2} = \frac{1}{M} \sum_{m=1}^{M} (\psi_{g}^{(m)})^2$, where $\psi_{g}^{(m)}$ is the m^{th} Monte Carlo sample of ψ_{g}, and approximate the posterior $p(\psi|y)$ with $N(\overline{\psi}, \overline{\psi^2} - \overline{\psi}^2)$. Finally, we assessed the posterior probabilities of heterosis in Table 1 via their ergodic averages, e.g., according to the first row of Table 1,

$$P(\text{high-parent H12 heterosis for gene } g|y) \approx \frac{1}{M} \sum_{m=1}^{M} I\left(2\beta_{g2}^{(m)} + \beta_{g4}^{(m)} > 0 \text{ and } 2\beta_{g3}^{(m)} + \beta_{g4}^{(m)} > 0\right)$$

where $I(A)$ is 1 if A is true and 0 otherwise.

For each analysis, we ran 4 independent Markov chains with overdispersed starting values relative to the full joint posterior distribution of the parameters. For each chain, we used a burn-in period of 10^5 iterations (the first 50 of those iterations without tuning the slice sampler), and then 10^5 true iterations with a thinning interval of 20 so that 5000 samples are retained for a small subset of parameters of interest. We monitored those chains for convergence using Gelman-Rubin potential scale reduction factors \hat{R} (Gelman & Rubin 1992) which were calculated using $\overline{\psi}$ and $\overline{\psi^2}$ (see Landau & Niemi (2016a)). Specifically, we monitored \hat{R} on the $2L + 2$ hyperparameters, the $G \times L$ parameters $\beta_{g\ell}$, and the G hierarchical variance parameters γ_g. In our experience, we found \hat{R} values near one for all but a few of the $\approx 10^5$ gene-specific parameters that varied when rerunning the MCMC. In addition, since we retained Monte Carlo samples of the hyperparameters, we monitored hyperparameter effective sample size, which we generally found to be well above the 10 to 100 effective samples recommended by Gelman et al. (2013).

For computation, we developed and used the R (R Core Team 2016) packages fbseq (Landau & Niemi (2016b), Landau & Niemi (2016a)) and fbseqCUDA (Landau 2016a),
publicly available on GitHub (GitHub, Inc. 2016). In Section 5, we also developed and used fbseqOpenMP (Landau 2016b), also available on GitHub. The fbseqOpenMP package is a version of fbseqCUDA that replaces CUDA with OpenMP, a less powerful but more accessible parallel computing technology (Dagum & Menon 1998). We also released fbseqStudies (Landau 2016c), an R package that replicates all the results of this paper. The fbseqStudies package is publicly available through the GitHub repository of the same name. Installing fbseqStudies according to the instructions in the package vignette and running the paper_case() function reproduces the computation, figures, tables, etc. shown in all the following sections.

4 Studies of simulated heterosis datasets

We assessed coverage of credible intervals (CIs), calibration of posterior probabilities, and the ability of our method to rank genes by constructing simulations with known values of the gene-specific parameters. For CIs, we calculated coverage, i.e. the proportion of genes whose true parameter value falls within the interval, across all genes and as a function of the parameter value, and compared this proportion to the intervals’ credibility. To assess calibration of posterior probabilities, we constructed kernel-smoothed plots of the true heterosis status of each gene against its estimated posterior probability, and we refer to these figures as calibration curves throughout. For each calibration curve, we calculated the mean absolute vertical distance from the identity line, which we call calibration error. Posterior probabilities provide a ranking of genes of interest for each hypotheses in Table 1. To evaluate these rankings, we constructed receiver operating characteristic (ROC) curves and the areas under these curves (Landau & Liu 2013).

For all the simulation studies in this article, we simulated RNA-seq count datasets under the plant hybrid scenario from Section 2. Each simulated dataset contained count data on \(G = 30000 \) genes for \(N = 16 \) or \(N = 32 \) total replicates spread evenly over the P1, P2, H12, and H21 varieties. From left to right, the columns in each count data table \(y \) corresponded to P1, P2, H12, and then H21, respectively. Within each variety, the all columns for the first block (flow cell) preceded all the columns of the second block. Thus our model matrix, which we also used to analyze the Paschold et al. dataset in Section 5,
is compactly represented as

\[
X = \begin{pmatrix}
1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
\end{pmatrix} \otimes J_{(N/4)\times1} \otimes \begin{pmatrix}
1 \\
1 \\
-1 \\
-1 \\
\end{pmatrix}
\]

(1)

where \(\otimes\) denotes the Kronecker product and \(J_{m\times n}\) is the \(m\) by \(n\) matrix with all entries equal to 1. We chose the first \(\ell = 1, \ldots, 4\) columns of the \(N \times L\) model matrix (\(L = 5\)) to strategically model gene expression heterosis. For a maize dataset similar to that of Paschold et al., Lithio & Nettleton (2015) found strong correlations among gene-specific model coefficient parameters, a phenomenon that could potentially violate our model’s conditional independence assumptions. To mitigate this effect among columns \(\ell = 1, \ldots, 4\), we selected a slightly reparameterized, two-hybrid version of the parameterization used by Ji et al. (2014) and Niemi et al. (2015). Column \(\ell = 5\) of \(X\) is a gene-specific experimental block effect, used in the analysis of the Paschold et al. data (Section 5) to account for the difference between the two flow cells of the sequencing platform in the original experiment. Table 2 provides interpretations for the parameters \(\beta_{gl}\) in terms of the log-scale group means while Table 1 provides the method to evaluate each heterosis hypothesis using these \(\beta_{gl}\) parameters.

For Section 4.2, we evaluated coverage, calibration, and ranking for simulations where the assumed model in the analysis matched the model used to generate data. Section 4.3 provides an assessment of robustness under two alternative data-generating scenarios as well as a comparison to an eBayes approach.

4.1 edgeR, a benchmark method

Throughout our analyses, in order to help measure the effectiveness of our fully Bayesian, hierarchical-model-driven scheme, we apply the method by McCarthy et al. (2012), an alternative approach whose model only borrows information across genes for the overdispersion parameters. McCarthy et al. proposed a negative binomial generalized linear model and implemented the estimation and inference in the edgeR package in R. Before estima-
Table 2: For the model matrix in Equation (1), interpretations of the parameters $\beta_{g\ell}$ in terms of the group means μ_{gv} (gene g, variety v). Group means and interpretations in the table are given on the natural logarithmic scale. Since β_{g5} cannot be expressed in terms of the group means, only the prose interpretation is given.

<table>
<thead>
<tr>
<th>$\beta_{g\ell}$</th>
<th>Using group means</th>
<th>Log-scale interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell = 1$</td>
<td>$\frac{\mu_{g,P1} + \mu_{g,P2}}{2}$</td>
<td>Parental mean</td>
</tr>
<tr>
<td>$\ell = 2$</td>
<td>$\frac{(\mu_{g,H12} + \mu_{g,H21})}{2} - \mu_{g,P2}$</td>
<td>Half difference, hybrid mean versus parent 2</td>
</tr>
<tr>
<td>$\ell = 3$</td>
<td>$\frac{(\mu_{g,H12} + \mu_{g,H21})}{2} - \mu_{g,P1}$</td>
<td>Half difference, hybrid mean versus parent 1</td>
</tr>
<tr>
<td>$\ell = 4$</td>
<td>$\frac{\mu_{g,H21} - \mu_{g,H12}}{2}$</td>
<td>Half the difference between hybrids</td>
</tr>
<tr>
<td>$\ell = 5$</td>
<td>$-$</td>
<td>Flow cell block effect</td>
</tr>
</tbody>
</table>

For the model matrix in Equation (1), interpretations of the parameters $\beta_{g\ell}$ in terms of the group means μ_{gv} (gene g, variety v). Group means and interpretations in the table are given on the natural logarithmic scale. Since β_{g5} cannot be expressed in terms of the group means, only the prose interpretation is given.

Using group means

<table>
<thead>
<tr>
<th>Log-scale interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parental mean</td>
</tr>
<tr>
<td>Half difference, hybrid mean versus parent 2</td>
</tr>
<tr>
<td>Half difference, hybrid mean versus parent 1</td>
</tr>
<tr>
<td>Half the difference between hybrids</td>
</tr>
<tr>
<td>Flow cell block effect</td>
</tr>
</tbody>
</table>

Next, gene-specific negative binomial dispersions are obtained by maximizing weighted sums of gene-specific Cox-Reid adjusted profile likelihoods, where the weighting occurs within groups of similar genes in order to borrow information and improve estimation. Then, gene-specific model coefficient parameters are estimated independently via maximum likelihood. While the method provides a useful baseline for comparing parameter estimates, it does not provide a comparison to posterior heterosis probabilities (Niemi et al. 2015).

4.2 Assessing performance when the data-generation and analysis models agree

We generated 10 datasets from the model in Section 3.1 using $N = 16$ total replicates per dataset. To generate each dataset, we fixed hyperparameters $\nu, \tau, \theta_1, \ldots, \theta_5$, and $\sigma_1, \ldots, \sigma_5$ to values similar to the posterior modes of the real data shown in Figure 3. Conditioning on
those fixed hyperparameter values, we generated the \(\gamma_g \)'s and \(\beta_{g\ell} \)'s from their hierarchical distributions under the model. Similarly, we conditioned on those \(\gamma_g \) values to generate the \(\varepsilon_{gn} \)'s from their hierarchical distributions. Finally, with parameter values in hand and the model matrix \(X \) given by Equation (1), we generated RNA-seq counts \(y_{gn} \) using the Poisson \(\exp (\varepsilon_{gn} + X_n \beta_g) \) distribution from the model (with \(h_n = 0 \) for all \(n = 1, \ldots, N \)).

We used a single node of a computing cluster with a single NVIDIA K20 GPU, two 2.0 GHz 8-Core Intel E5 2650 processors, and 64 GB of memory. The maximum total elapsed runtime per dataset was around 3.2 hours using the GPU-parallelized algorithm. For each dataset, no more than 9 \(\hat{R} \) values were above 1.1 and these all correspond to \(\beta_{g\ell} \) parameters. For the hyperparameters, the minimum effective sample size across all simulated datasets was \(\sim 600 \) (for \(\sigma^2_d \)). Evidence of lack of convergence was weak overall, though estimation and inference may be poor for the few genes with \(\hat{R} > 1.1 \).

With these results, we assessed the accuracy of posterior inference on the hyperparameters. Figure S1 shows the estimated 50% and 95% credible intervals for all 10 datasets, along with the true values used in data generation. There appears to be no apparent overall bias in the location of the intervals and, for each parameter, the number of intervals covering the truth is consistent with the appropriate binomial distribution.

We also assessed posterior inference on the parameters \(\beta_{g\ell} \) because they are important for detecting heterosis genes. As described in Section 3.2, we retained full samples of only a few randomly selected \(\beta_{g\ell} \) and otherwise approximate posteriors via their normal approximations. Across the simulations, coverage for normal-based 95% CIs ranged from 94.7% to 95.4% for \(\ell \neq 4 \) and from 92.9% to 96.7% for \(\ell = 4 \). Figure 1 displays the smoothed coverage proportions plotted against the true parameter values. From the figure, for each \(\ell \), coverage exceeded desired minimum near the overall mean true parameter value, but dropped for extreme parameter values. The lower row in Figure 1 shows that for \(\ell > 1 \) the low \(\beta_{g\ell} \)'s tended to be overestimated and the high \(\beta_{g\ell} \)'s tended to be underestimated, i.e. the CIs shrunk towards the hierarchical mean. Figure S2 shows the mean squared error (MSE) of the model coefficient estimates for each method, where the mean is computed over all the genes. MSE is significantly lower in our method relative to edgeR, which is a reflection of the benefits of borrowing information.
Figure 1: Posterior inference on the β_{gl} parameters for Simulation Study 1 in Section 4.2. For each $\ell = 1, \ldots, 5$ and each dataset, the top row shows the kernel-smoothed local proportion of β_{gl} parameters for which 95% CIs cover the true parameter values. The horizontal dashed lines are at 0.95, the desired coverage rate, and the solid black vertical lines indicate the respective true values of the hierarchical means θ_ℓ used to generate the count data. The bottom row shows, for $\ell = 1$ through 5 in the same order, the CIs (dark gray vertical lines) that do not cover the true parameter values (black points). Here, the solid black horizontal lines indicate the true hierarchical mean, θ_ℓ.
Finally, Figure S3 shows a receiver operating characteristic (ROC) curve for each kind of heterosis and each dataset. The results, all favorable for our proposed approach, are extremely similar across datasets. With areas under the curves ranging from 0.916 to 0.922 for low-parent heterosis and from 0.930 to 0.936 for high-parent heterosis, our method competently filtered out the heterosis from the null genes. In addition, all the calibration curves in Figure S4 are extremely close to the identity line, so the estimated posterior probabilities of heterosis were extremely accurate and well-calibrated.

4.3 Robust comparison of fully Bayes versus eBayes

In RNA-seq analyses, eBayes is relatively more common than fully Bayes (Hardcastle & Kelly 2010, Wu et al. 2012, Ji et al. 2014, Niemi et al. 2015) due to the reduced computational burden even though theoretically, eBayes procedures risk lower quality estimation and posterior inference by ignoring hyperparameter uncertainty. For this study, we considered two eBayes versions of our fully Bayesian approach: the Oracle approach fixed hyperparameters at the values used in data generation while the Means approach fixed hyperparameters at the posterior means estimated from the fully Bayesian approach. Thus, these methods provided a comparison under the best possible case for eBayes, and we did not address the question of how to obtain eBayes estimates of hyperparameters without running a fully Bayesian analysis.

For a robust comparison of our three methods, we simulated two datasets, one with $N = 16$ total replicates and the other with $N = 32$, under each of the three scenarios below. To generate counts, all scenarios used known values of the parameters $\beta_{g\ell}$, along with known γ_g’s or negative binomial dispersions, depending on the data-generating mechanism. Thus, parameter estimation and gene detection could be assessed as in the previous simulation study. The following three approaches were used to generate gene-specific parameter values.

Model Datasets were generated exactly as in Simulation Study 1. This was the only scenario where the true hyperparameter values were known, so it was the only scenario where we applied the Oracle eBayes method.

edgeR This scenario utilized the benchmark method by McCarthy et al. (2012) explained in Section 4.1. First, we applied the edgeR package to the Paschold
et al. (2012) data to obtain normalization factors, estimated negative binomial dispersions, and estimated $\beta_{g\ell}$ parameters. Then, using these quantities as truth, we simulated counts using the negative binomial model of McCarthy et al..

Simple The β_{g1} and β_{g5} parameter values were generated from normal distributions similar to their counterparts in the Model simulation. For $\ell = 2, 3, $ and 4, the $\beta_{g\ell}$’s were drawn from discrete distributions in order to exaggerate the heterosis effect. We used $P(\beta_{g\ell} = 0) = 0.5$ and $P(\beta_{g\ell} = 1) = P(\beta_{g\ell} = -1) = 0.25$ for $\ell = 2$ and 3, $P(\beta_{g4} = 0) = 0.99$, and $P(\beta_{g4} = 1) = P(\beta_{g4} = -1) = 0.005$. All $\beta_{g\ell}$ parameters were generated independently across $g = 1, \ldots, G$ and $\ell = 1, \ldots, L$. With the parameters in hand, count data were generated from a negative binomial model with a single common dispersion for all genes close to value of the dispersions obtained from the Paschold et al. dataset using edgeR. With respect to each of the six kinds of heterosis given in Section 2 and Table 1, roughly 6.5% of the simulated genes had some type of heterosis.

The fully Bayesian implementation was exactly the same as the previous simulation study with essentially the same results in terms of runtime, convergence diagnostics, and effective sample size for hyperparameters. The MCMC step of the eBayes procedure was also performed using the software in the R packages fbseq and fbseqCUDA utilizing an option to skip sampling of hyperparameters. The runtime of this step was similar to the fully Bayesian analysis, e.g. up to 2.7 hours for eBayes versus 3.2 hours for fully Bayes for $N = 16$ and up to 4.3 hours versus 4.8 hours for $N = 32$, since the vast majority of time is spent in sampling the gene-specific parameters.

Figure S5 shows the observed rates at which estimated 95% credible intervals cover parameters $\beta_{g\ell}$ for each method under comparison. Coverage was around the nominal 95% for the Model scenario, as well as for the Simple scenario, except for slightly higher-than-nominal coverage of the β_{g4}’s. In the edgeR scenario, coverage was uniformly poor, ranging roughly from 50% to 90%.

Figure 2 provides MSE for the $\beta_{g\ell}$ parameters where each mean is taken over all the genes. Here, MSEs are almost the same between the eBayes and fully Bayesian methods,
once again showing these methods to be equally-matched. Overall, MSE is highest in the edgeR scenario and lowest in the Simple scenario (see the y-axis scales) indicating that parameter estimation is most challenging in the edgeR scenario. MSE for the fully Bayes and eBayes approaches are smaller or similar to the edgeR results except for β_{g1} in the edgeR simulations with 16 samples. As in Figure 1, the β_{g1}'s have higher variability than the other model coefficients so information borrowed across genes is least useful here. In contrast, MSE dramatically improved relative to edgeR for β_{g4} where true parameters are drawn from distributions tightly concentrated around zero.

Figure 2: For Simulation Study 2 in Section 4.3, mean squared errors of the estimated model coefficients, where each mean is taken over all the genes. The row labels indicate simulation scenarios, and the lines in each panel correspond to individual simulated datasets.

Similar overall patterns carry over from parameter estimates to posterior probabilities of heterosis. Figure S11 shows the calibration errors as defined in Section 4, which varied only slightly between the eBayes and fully Bayesian approaches. Calibration error was similar across sample sizes, but increased from the Model scenario to the edgeR scenario and dramatically increased in the Simple scenario.
Figure S9 shows the calibration curves themselves for $N = 16$. (The results for $N = 32$, shown in Figure S10, are similar.) Compared to the Model scenario calibration was worse in the edgeR scenario, where many low probabilities were underestimated and high probabilities were overestimated for some types of high-parent heterosis. For the edgeR scenario, low-parent heterosis probabilities tended to be overestimated overall. Calibration was egregiously poor in the Simple scenario, where posterior probabilities were heavily overestimated.

Figures S6 and S7 provide ROC curves for $N = 16$ and $N = 32$ while Figure S8 provides areas under the ROC curves (AUCs) for all simulations. The AUCs were around 0.85 (0.90) for edgeR, 0.94 (0.96) for Model, and 0.99 (0.99) for Simple with $N = 16$ ($N = 32$). The ROC curves and AUCs were almost identical for the fully Bayes and eBayes methods. Thus, despite a lack of coverage and poor calibration of posterior probabilities, the methodology appears to have provided reasonable rankings of genes even when the model assumed in the analysis disagreed with the data-generating mechanism.

5 Fully Bayesian analysis of the Paschold et al. dataset

Having assessed our methodology’s estimation, inference, and gene detection abilities in the simulation studies in Section 4, we now turn back to the original motivating heterosis dataset in Section 2, where P1 is B73, P2 is Mo17, H12 is B73×Mo17, and H21 is Mo17×B73. The model matrix X and the interpretations of the parameters $\beta_{g\ell}$ are the same as in Section 4.

The dataset contains count data for $G = 39656$ genes on $N = 16$ biological replicates evenly spread over the four varieties. A large fraction of genes in the reference genome have low expression levels: roughly 21% have mean counts less than 1 and 39% have mean counts less than 10. Still, the mean count is around 255.5, the median is 37, the third quartile is 290, and the maximum is 38010. Figure S12 shows a kernel density estimate of the log of the counts after incrementing by 1. As the figure suggests, the counts are multimodal, mainly split into low and high count groups.

We applied our fully Bayesian approach to the Paschold et al. dataset using the same number of chains, burn-in length, thinning, number of iterations, hardware, etc. as in Sec-
tion 4.2. The GPU-accelerated version had a total elapsed runtime of 3.9 hours compared to an OpenMP version with 16 OpenMP threads that would have taken 5 days. Similar to previous convergence diagnostics, \hat{R} was less than 1.1 for all parameters except three $\beta_g\ell$ parameters and one γ_g parameter, and all the hyperparameter effective sample sizes were above 500.

Figure 3 shows posterior distributions for all hyperparameters. The marginal posterior distributions were approximately normal and extremely narrow, so uncertainty in these parameters was small. The marginal posteriors were so concentrated that the prior distributions, which were diffuse and uninformative, would just appear as horizontal lines near zero in the figure.

![Kernel density estimates from MCMC samples of the hyperparameters from the fully Bayesian analysis of Paschold et al. data.](image)

Figure 3: Kernel density estimates from MCMC samples of the hyperparameters from the fully Bayesian analysis of Paschold et al. data.

Figure 4 provides posterior distributions and normal-based approximations to the posterior distributions, as described in Section 3.2, for a random subset of $\beta_g\ell$ parameters. For each parameter, the normal approximation closely matched the kernel density estimate, as
did the equal-tail 95% CIs computed from each. This finding justifies the computational strategy recommended by Landau & Niemi (2016a), which, for the sake of computational tractability, discarded most MCMC parameter samples and retained only the estimated posterior means and mean squares of these parameters.

Figure 4: Kernel density estimates (shaded area) and approximate normal densities (dashed lines) of the marginal posterior distributions and 95% equal-tail credible intervals based on MCMC samples (solid) and normal approximation (dashed) of a random subset of $\beta_{g\ell}$ parameters based on the fully Bayesian analysis of the citeauthorpaschold data.

To assess shrinkage, we compare our hierarchical model approach with the (relatively) non-hierarchical edgeR method by McCarthy et al. (2012) explained in Section 4.1. Figure 5 compares posterior means of gene-specific parameters from the hierarchical model to the
analogous estimates from the non-hierarchical model. Virtually no shrinkage is observed for the β_{g1} since the estimated hierarchical variance, σ_i^2 in Figure 3, is large. In contrast, the rest of the $\beta_{g\ell}$ estimates from the hierarchical model show shrinkage (towards the hierarchical means) relative to the analogous non-hierarchical model estimates with the most severe shrinkage occurring for the β_{g4}’s. The lower-right panel of the figure plots the log of the γ_g parameters versus the log of the edgeR dispersions. The estimates are strongly associated with the identity line, supporting the notion that the γ_g’s are equivalent to negative binomial dispersions. The odd shape is due to the edgeR approach of borrowing information about overdispersion for genes with similar expression levels and finding that genes with higher expression have lower overdispersion values.

Figure 5: Two-dimensional hexagonal histograms with logarithmic shading of posterior means from the fully Bayesian analysis versus estimates from the edgeR analysis for gene-specific parameters of the Paschold et al. data with the identity line (solid) and hierarchical mean (dashed) under the fully Bayesian analysis. In the lower-right panel, the horizontal axis corresponds to the log-scale gene-specific negative binomial dispersions from edgeR.

Figure S13 shows the estimated posterior probabilities of each kind of heterosis. Most
probabilities are below 0.5, and there is a spike at 0 for each kind of heterosis, so gene-
specific heterosis appears uncommon overall. In addition, there is a spike around 0.25 in
each histogram, which corresponds to unexpressed and barely expressed genes. The value
0.25 is the estimated predictive probability for a new gene \tilde{g}

$$P(\beta_{g2} > 0 \text{ and } \beta_{g3} > 0 | y) \approx P(\beta_{g2}/\sigma_{2} > 0 | y)P(\beta_{g3}/\sigma_{3} > 0 | y) \approx 0.25$$

since θ_2 and θ_3 are close zero (see Figure 3), β_{g2} and β_{g3} are assumed independent, and the
probability that a bivariate, independent, standard normal is in the positive quadrant is
0.25.

We also compare these probabilities to estimated effect size, which we take to be a
relative measure of the strength of heterosis in terms of estimated posterior means. For
example, consider the heterosis of a gene g with respect to the B73×Mo17 hybrid. From
Table 1, heterosis occurs if $2\beta_{g2} + \beta_{g4} > 0$ and $2\beta_{g3} + \beta_{g4} > 0$. For this type of heterosis we
define the effect size of gene g to be the positive part of $\min((2\beta_{g2} + \beta_{g4}, 2\beta_{g3} + \beta_{g4}) / \sqrt{g}$. We define effect size for the other types of heterosis similarly, using the analogous linear
combinations of the $\beta_{g\ell}$’s from Table 1. In Figure 6, we plot estimated posterior probabilities
against their analogous estimated effect sizes. Each panel shows a so-called “volcano” plot
similar to Figure 4 of Niemi et al. (2015). The highest concentrations of genes correspond
to low effect sizes and low posterior probabilities with a distinct ridge at low probabilities
with an effect size of zero (due to the definition of effect size). Posterior probability and
effect size are positively associated and genes of interest for future investigation are genes
with high posterior probability and large effect size. Table S1 provides these posterior
probabilities and effect sizes enabling scientists to search in maize genome databases for
relationships amongst these genes.

6 Discussion

We presented a fully Bayesian strategy for modeling high-dimensional count data, a rare
approach in fields such as RNA-seq data analysis due to the computational challenges,
but solidly tractable with new massively parallel computing strategies. We applied our
approach to the heterosis problem in RNA-seq data analysis, where no existing methods
Figure 6: Two-dimensional hexagonal histogram of gene-specific posterior probabilities of heterosis, shaded on a logarithmic scale, against the analogous effect sizes from the fully Bayesian analysis of the Paschold et al. data. Results are shown for high (top row) and low (bottom) heterosis for the B73 × Mo17 hybrid (left column) and Mo17 × B73 hybrid (middle), and their mean (right).
for RNA-seq analysis are directly applicable. We used simulation studies to assess the fully Bayesian approach and compared it to two best-case-scenario eBayes counterparts. From our simulations, we found that our fully Bayesian method strongly shrunk estimates of important gene-specific parameters towards common means, which generally improved estimation relative to a non-hierarchical model. The fully Bayesian and eBayes methods performed equally well under all metrics considered. This finding supports the use of eBayes methods in RNA-seq analyses when good hyperparameter estimates are available. However, we did not investigate computationally efficient methods to obtain eBayes hyperparameter estimates. We also note that computationally there is little benefit to using eBayes relative to our fully Bayes method, e.g. 4.3 hours vs. 4.8 hours, unless the researcher selects a small subset of genes to evaluate in the second stage of an eBayes analysis. Finally, we analyzed the motivating RNA-seq dataset by Paschold et al. (2012) to evaluate the evidence for each of six types of heterosis and therefore provide guidance on genes that may be involved in the molecular mechanism for heterosis.

Our methodology has important application-level utility for practitioners in multiple-testing scenarios such as genomics. Procedures for controlling the false discovery rate (FDR) usually require the null p-values to have a uniform distribution (Benjamini & Hochberg 1995, Storey 2003, Meinhausen & Rice 2006, Dudoit & Laan 2008), a condition that is typically violated when composite null hypotheses are tested (Bayarri & Berger 2000, Robins et al. 2000, Sun & McLain 2012, Dickhaus 2013). We avoid the need for such a tenuous assumption by dispensing with an explicit FDR control procedure altogether, opting instead for a fully Bayesian approach with a hierarchical model that shares information across genes (Muller et al. 2007). FDR control aside, this borrowing of information is associated with improvements in parameter estimation and gene detection (Landau & Liu 2013, Ji et al. 2014, Niemi et al. 2015).

Our results suggest some possible improvements to our model for future work. From Figure 1, the gene-specific parameters $\beta_{g\ell}$ were poorly estimated if their true values are extreme for a given index element ℓ. Specifically, low $\beta_{g\ell}$’s tended to be overestimated and high $\beta_{g\ell}$’s tended to be underestimated, i.e. the estimates of extreme $\beta_{g\ell}$ parameters were overly shrunk towards their hierarchical means. If we assumed hierarchical distributions
with heavier tails, e.g. Laplace, Student t, or horseshoe (Carvalho et al. 2009), shrinkage should relax for extreme β_g’s, and overall estimation, inference, and gene detection could improve. Alternatively, a semi-parametric approach, e.g. a Dirichlet process mixture (Muller & Mitra 2013, Liu et al. 2015), could be employed to estimate the distribution of the gene-specific parameters.

7 Supplementary Materials

Supplementary materials for this article are available online. The supplementary figures (Figure S1, Figures S2, etc.) are in a separate pdf document. Table S1 is a comma-separated values spreadsheet containing the total per-replicate gene expression counts of the Paschold et al. (2012) data, as well as fully Bayesian posterior estimates of the gene-specific heterosis probabilities, gene-specific parameter means and standard deviations, estimated effect sizes, and gene-specific parameter estimates from the edgeR method by McCarthy et al. (2012) from Section 4.1.

8 Acknowledgements

This research was supported by National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health and the joint National Science Foundation / NIGMS Mathematical Biology Program under award number R01GM109458. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

References

URL: http://r-nimble.org

URL: https://github.com

URL: http://dx.doi.org/10.5281/zenodo.56054

URL: http://dx.doi.org/10.5281/zenodo.56053

URL: http://dx.doi.org/10.5281/zenodo.56060

URL: http://dx.doi.org/10.5281/zenodo.56052

URL: https://projecteuclid.org/euclid.ba/1369407550

URL: http://dx.doi.org/10.1007/s13253-015-0230-5

URL: http://www.R-project.org/

Stan Development Team (2014), ‘RStan: the R interface to Stan, version 2.5.0’.

URL: http://mc-stan.org/rstan.html

