Assembled Monolayers Depends upon the Roughness of the Substrate and the Orientation of the Terminal Moiety

Lucas B. Newcomb
University of Massachusetts Boston

Ian Tevis
Iowa State University, itevis@iastate.edu

Manza B. J. Atkinson
University of Massachusetts Boston

Symon M. Gathiaka
Auburn University

Follow this and additional works at: http://lib.dr.iastate.edu/mse_pubs

This Article is brought to you for free and open access by the Materials Science and Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Materials Science and Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Authors
Lucas B. Newcomb, Ian Tevis, Manza B. Atkinson, Symon M. Gathiaka, Rafael E. Luna, and Martin M. Thuo

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/mse_pubs/227
Odd–Even Effect in the Hydrophobicity of n-Alkanethiolate Self-Assembled Monolayers Depends upon the Roughness of the Substrate and the Orientation of the Terminal Moiety

Lucas B. Newcomb,† Ian D. Tevis,‡ Manza B. J. Atkinson,† Symon M. Gathiaka,§ Rafael E. Luna,¶ and Martin Thuo*,†,

†Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
‡Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011, United States
§Department of Chemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
¶Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States

Supporting Information

ABSTRACT: The origin of the odd–even effect in properties of self-assembled monolayers (SAMs) and/or technologies derived from them is poorly understood. We report that hydrophobicity and, hence, surface wetting of SAMs are dominated by the nature of the substrate (surface roughness and identity) and SAM tilt angle, which influences surface dipoles/orientation of the terminal moiety. We measured static contact angles (θ) made by water droplets on n-alkanethiolate SAMs with an odd (SAM) or even (SAM) number of carbons (average θ range of 105.8−112.1°). When SAMs were fabricated on smooth “template-stripped” metal (M̄) surfaces [root-mean-square (rms) roughness = 0.36 ± 0.01 nm for Aū and 0.60 ± 0.04 nm for Aḡ], the odd–even effect, characterized by a zigzag oscillation in values of θ, was observed. We, however, did not observe the same effect with rougher “as-deposited” (M̃) surfaces (rms roughness = 2.27 ± 0.16 nm for Aũ and 5.13 ± 0.22 nm for Ag̃). The odd–even effect in hydrophobicity inverts when the substrate changes from Aū to Aḡ (higher θ for SAM than SAM) with average Δθ̄̃ ≈ 3° to Aḡ (higher θ for SAM than SAM), with average Δθ̄̃ ≈ 2°. A comparison of hydrophobicity across Aḡ and Aū showed a statistically significant difference (Student’s t test) between SAM (Δθ̄̃) and SAM (Δθ̄̃) but failed to show statistically significant differences on SAM (Δθ̄̃) and SAM (Δθ̄̃) (p < 0.01) but failed to show statistically significant differences on SAM (Δθ̄̃) and SAM (Δθ̄̃) (p > 0.1). From these results, we deduce that the roughness of the metal substrate (from comparison of M̄ versus M̃) and orientation of the terminal −CH₃ makes a major role in the hydrophobicity of SAMs.

INTRODUCTION

The odd–even effect is a widely observed phenomenon across many disciplines that include physics, chemistry, materials science, and biology.¹−¹⁹ The odd–even effect describes an alternation in structure and/or property of an object depending upon whether there are odd or even numbers of a basic unit. In self-assembled monolayers (SAMs), the structural unit is often the number of non-hydrogen atoms, excluding the anchoring headgroup, present in the molecule that make up the monolayer (CH₃ for hydrocarbons). Understanding the odd–even effect has technological implications in the design and development of SAM-based technologies, such as molecular tunneling junctions, field-effect transistors, and molecular diodes, among many others.

To design and develop technology based on SAMs, we first sought to understand the odd–even effect in simple SAMs on Au and Ag, those derived from n-alkanethiolates of medium-chain length (C₉−C₁₆). Medium-chain-length monolayers are known to be well-ordered and liquid-like, and they have been employed as model systems in several studies. Although several reports have consistently shown the odd–even effect in contact angles with liquids that wet n-alkanethiolate SAMs, there is no clear evidence of the odd–even effect in their hydrophobicity. Figure 1a gives a summary of previously reported contact angle measurements for water on n-alkanethiolate SAMs that are relevant to the current study. Porter and co-workers reported an odd–even effect in hydrophobicity of n-alkanethiolate SAMs on Ag by measuring advancing contact angles, θₐ (panel i of Figure 1a). The data by Porter and co-workers, however, were
inconsistent with other reports that followed (Figure 1a) and did not include statistical evaluation of the data.

■ HYDROPHOBICITY OF N-ALKANETHIOLATE SAMS

Previous studies on hydrophobicity of n-alkanethiolate SAMs, as captured in the contact angle formed between the SAM and a water droplet (θ_{adv}) on either Ag or Au, are not conclusive with regard to the presence or absence of an odd–even effect (Figure 1a). Two of the initial studies by Laibinis et al. (Whitesides’ group) and Walczak et al. (Porter’s group) are in disagreement: the former observing an odd–even oscillation in the values of the advancing contact angle, θ_{adv}, while the former did not. Other studies that followed did not support the presence of an odd–even effect in the hydrophobicity of n-alkanethiolate SAMs. The odd–even effect was, however, observed with liquids that wet the SAM ($\theta_{\text{adv}} < 90^\circ$) or when the thiol had a different terminal moiety besides CH_2CH_3, for example, a terminal CH_2CF_3. These CF$_3$-terminated n-alkanethiols have a larger dipole moment and interact more strongly with a relatively weak dipole, such as that in water, and this is enough to overcome surface roughness effects, giving rise to a measurable odd–even oscillation. On the basis of the smoothness and uniformity of surfaces used in Porter’s and Whitesides’ work, which were largely limited by the state-of-the-art fabrication of metal films, it is surprising that Porter and co-workers observed an odd–even effect in CH_2CH_3-terminated n-alkanethiols. The presence of an odd–even effect was deduced from a zigzag oscillation in the contact angles but was not subjected to statistical scrutiny. In these earlier studies, there was no mention of replication, data variances, or statistical evaluation.

Figure 1. Summary of the structure and property relevant to the wetting properties of SAMs. (a) Hydrophobicity of n-alkanethiolate SAMs as captured through values of advancing contact angles formed between the SAM and a drop of water as reported by (i) Porter and co-workers, (ii, iv, and v) Whitesides and co-workers, (iii) Tao and Lee, (vi) Colorado and Lee and Lee et al., and (vii) Graupe et al. and Miura et al. on either Ag, Cu, or Au. All previous studies were performed on “as-deposited” surfaces. (b) Schematic illustration of the structural effect of the SAM tilt angle, because of change in the substrate, on the tilt and orientation of the terminal moiety (surface dipole) of n-alkanethiol monolayers on metal surfaces based on current generalized models of bonding and monolayer tilt angles. Orientation of the terminal moiety inverts with the change of the substrate; SAMs on Au orient like SAMs on Ag and vice versa. (c) Theoretically optimized electrostatic potential map and frontier orbital localization in n-alkanethiols as reported by Vogt. (d) Calculated surface normal dipole moments for n-alkanethiols bound on a metal show a significantly different ($\Delta D_n = (n - 1)l \approx 0.001$) but visible odd–even oscillation. Graphs in panel a are reprinted with permission from (i) ref 14, Copyright 1991 American Chemical Society, (ii, iv, and v) ref 20, Copyright 1991 American Chemical Society, (iii) ref 21, Copyright 1994 Elsevier, (vi) ref 23, Copyright 2001 American Chemical Society, and (vii) ref 24, Copyright 1999 American Chemical Society.
With the importance of SAMs as a general platform in many technologies, this gap and inconsistency in one of the most basic properties of the SAMs ought to be addressed.

Current models of an ideal SAM (on an atomically flat surface and molecules in an all trans-extended conformation with no gauche rotation) suggest that an odd−even effect in wetting or other interface-dependent properties of a SAM should be expected (Figure 1b). Theoretical evaluation of the electrostatic potential maps and frontier orbital localization by Vogt26 does not indicate any significant electronic perturbation of molecules upon bonding to the metal that could significantly influence the interface to have a major effect and, hence, warrant significant consideration (Figure 1c).24 Optimized molecular dipole moments along the surface normal for Ag-based SAMs show a small zigzag oscillation (∼0.01 D) between the odd and even n-alkanethiols (Figure 1d). This difference was attributed to the change in the orientation of the terminal moiety relative to the surface and has previously been implicated as a possible origin of the odd−even effect, albeit with fluorinated SAMs.26

We believe that the odd−even effect in SAMs, such as the zigzag oscillation in the surface normal dipole, should invert with the change of the substrate from Ag to Au and vice versa based on the known structures of SAMs on these surfaces (Figure 1b). Because odd−even effects have recently been observed in studies of charge transport by tunneling using physisorbed liquid top electrodes, we hypothesized...
that a similar statistically significant odd–even effect should be observed in the hydrophobicity of n-alkanethiolate SAMs. In such a case, the effect of the orientation of the terminal group and molecular packing density on the surface properties of the SAM can be deduced. These results would have consequences in application of SAMs, especially in predicting the influence of surface properties on the rate of charge injection in tunneling junctions.

RESULTS AND DISCUSSION

All surfaces were purchased from Substrata, Inc. and were either used as received (MAD) or template-stripped (MTS) as previously described.11,19,35,36 Panels a and e of Figure 2 show atomic force microscopy (AFM) analysis of AuTS [root-mean-square (rms) roughness of 0.36 ± 0.01 nm] and AuAD (rms roughness of 2.27 ± 0.16 nm) surfaces. The observed roughness data are comparable to those previously observed by others.37,38 Average rms roughness values were obtained from at least seven substrates with 10 measurements from each substrate. Generally, AuTS surfaces have lower rms roughness and large grain sizes separated by shallow grain boundaries (panels a and b of Figure 2), making them ideal for the study of SAMs. On the other hand, AuAD surfaces, which dominated earlier studies on wetting properties of SAMs, have large rms roughness, small grain sizes, and large grain boundaries (panels e and f of Figure 2). The differences in roughness between the two surfaces were confirmed by scanning electron microscopy (SEM), which also suggests that the surfaces could be polycrystalline (panels c and g of Figure 2).

Observation of the Odd–Even Effect Depends upon Surface Roughness. The AuTS and AuAD surfaces were then used to form n-alkanethiolate [S(CH\textsubscript{2})\texttext{n}H, where \texttext{n} = 8–16, except for 13] SAMs as previously described.11,19 When we formed n-alkanethiolate SAMs on AuTS and measured their static contact angles with water, \(\theta\textsubscript{s}\), we observed that SAME gave higher \(\theta\textsubscript{s}\) than analogous SAME (Figure 2d), with a characteristic zigzag oscillation with an increase in the molecular length. The data were found to be statistically significant different with a 99% confidence level using Student’s \(t\) test (\(p < 0.01\)). We also observed that, as previously observed by Laibinis et al.,20 there is a slight but gradual increase in \(\theta\textsubscript{s}\) with an increase in the molecular length [from C\textsubscript{9} (107.7° ± 0.7°) to C\textsubscript{16} (112° ± 0.5°)]. When SAMs were formed on the rougher “as-deposited” (AuAD) surfaces, there is no oscillation in \(\theta\textsubscript{s}\), with an increase in the molecular length [from C\textsubscript{9} (105.8° ± 0.5°) to C\textsubscript{16} (109° ± 0.6°)]. When SAMs were formed on the rougher “as-deposited” (AuAD) surfaces, there is no oscillation in \(\theta\textsubscript{s}\), with an increase in the molecular length [from C\textsubscript{9} (105.8° ± 0.5°) to C\textsubscript{16} (109° ± 0.6°)]. The difference in \(\theta\textsubscript{s}\) between the shorter and longer SAMs can be attributed to the SAM becoming more rigid, giving the surface a better defined interface, or, in the case of the rough surface, the SAM starting to dictate the nature of the
interface formed between the SAM and water rather than being dominated by the roughness of the metal substrate. Average contact angles derived from the AuAD surface are slightly lower, although not a statistically significant difference, than those derived from analogous SAMs on AuTS surfaces (average \(\theta_{\text{AuTS}} - \theta_{\text{AgTS}} \approx 1.3^\circ\)). From the study of wetting between the two surfaces, we can infer that an odd—even effect exists in the hydrophobicity of SAMs formed on the ultraflat AuTS surface but not on the rougher AuAD surface.

Jabbarzadeh and co-workers, through theoretical simulation, have shown that hydrated SAMs give a lower coefficient of friction than analogous SAMs on Au(111). In simulated high-pressure environments, water penetrates deeper into SAMs than in the analogous SAMs. On the basis of the data above, we can infer that this behavior could be driven, in part, by the fact that water wets SAMs on AuTS (lower \(\theta_{\text{agg}}\)) better than SAMs. Because wetting is an interface phenomenon, the lower contact angle observed with SAMs on AuTS implies that water adheres better (spreads) on these surfaces than on the analogous SAMs. Hydrophobicity is related to the work of adhesion, \(W_{\text{adh}}\), which is related to the interfacial surface energy by the general rule \(W_{\text{adh}} \approx 2\gamma_{\text{int}}\) for non-wetting surfaces according to the Young–Dupre equation (eq 1). We can, therefore, infer that the spreading parameter, \(S\), and \(\gamma_{\text{int}}\) are different for SAMs and SAMs.

\[
W_{\text{adh}} = \gamma (1 - \cos \theta)
\]

This premise, that the interface parameters \(S\) and \(\gamma_{\text{int}}\) are different, would imply that inverting the orientation of the surface-exposed moieties, in our case, \(-CH_2CH_2-\), would lead to an analogous inversion in \(S\) and \(\gamma_{\text{int}}\) assuming that everything else remains the same. This inversion in surface dipoles or terminal group orientation can be achieved by changing the substrate from AuTS to AgTS (Figure 1b). It is, however, well-known that SAMs on Ag \([(\sqrt{7} \times \sqrt{7})R19.1^\circ]\) are more densely packed than those on Au \([(\sqrt{3} \times \sqrt{3})R30^\circ]\), where the surface area per adsorbed molecule is 29% larger.\(^{41,42}\) Hence, the need to devolve the e orientation of the packing density from changes as a result of surface dipoles, which is the result of the orientation of the terminal group. Figure 1b shows that, for SAMs on Au, the surface-exposed \(-CH_2CH_2-\) moiety is oriented almost parallel to the surface normal, analogous to SAMs on Ag (Figure 1b). For SAMs on Au, the terminal moiety is oriented away from the surface normal, analogous to SAMs on Ag (Figure 1b). This reversal in orientation of the terminal moiety across the substrates is understood to be due to a change in hybridization at the headgroup from a \(S_p\) to a \(S_p\).\(^{9,41,43}\) Therefore, we hypothesized that a change in the orientation of the terminal moiety, as a result of a change in the substrate, will lead to a reversal in \(\gamma\), which leads to an inversion of the odd—even effect; i.e., on AgTS, SAMs would have higher contact angles than SAMs, while the reverse was true with AuTS SAMs.

Inverting Orientation of Surface Moiety Inverts the Odd—Even Effect in Hydrophobicity. Figure 3 shows our results with Ag substrates. We prepared AgTS and AgAD surfaces that showed a significant difference in roughness (rms of 0.6 ± 0.04 and 5.1 ± 0.2 nm, respectively). The observed roughness data are comparable to those previously observed by others.\(^{37,38}\) As previously observed, template-stripped surfaces, AgTS, had larger grains and smaller asperities than the “as-deposited”, AgAD surfaces.\(^{36}\) We, however, observe that there is a slight difference in the rms roughness between the two metal surfaces, irrespective of the method of preparation. The MTS surfaces were the roughest and showed the largest differences (rms \(1.0 \text{~nm} = 2.86 \text{~nm}\)), while MTS surfaces showed a slight variation (rms \(1.0 \text{~nm} = 0.24 \text{~nm}\)). Despite the small difference in roughness between the MTS, we believe that comparison of hydrophobicity of SAMs formed on these surfaces will give general insights into monolayers because the differences in roughness are in the order of 1.5 C–C bond length, a defect that can be mitigated by gauche effects during the assembly process. Table 1 lists the average of \(\theta\) for all SAMs on the two metal substrates from at least seven measurements per sample.

As observed with Au surfaces, measurements of water \(\theta\), showed an odd—even effect in AgTS but not in AgAD. When the surface is changed from Au to Ag, the odd—even effect inverts; SAMs has a higher \(\theta\) than SAMs. As predicted, the odd—even effect has inverted with the change of substrate analogous to inversion in the orientation of the terminal moiety and, hence, the surface dipole. On the basis of our data, we infer that the previously reported odd—even effect in hydrophobicity of Ag SAMs was inaccurate for three reasons: (i) the differences in values of contact angles between the odds and evens for medium-sized SAMs were not subjected to any statistical test for significant differences at any confidence interval; (ii) the zigzag oscillation is analogous to what we observe in Au, suggesting that the oscillation could be due to an artifact, as previously suggested by Whitesides and co-workers,\(^{30}\) or an overinterpretation of the data; and (iii) with the as-deposited surface, MTS, we did not observe an odd—even effect even after repeated measurements. From the rms roughness of the AgAD surfaces, the asperities are too large to allow for formation of a well-defined interface upon formation of the monolayer. We, therefore, concur with Whitesides and co-workers\(^{30}\) that the odd—even effect reported by Porter and co-workers\(^{34}\) could be due to surface oxidation or adventitious impurities.

To understand the origin of the difference in SAMs and SAMs and, hence, the odd—even effect, we examined the

<table>
<thead>
<tr>
<th>alkanethiol (number of C)</th>
<th>contact angle, (\theta) (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AuAD</td>
</tr>
<tr>
<td>9</td>
<td>107.7 ± 0.7</td>
</tr>
<tr>
<td>10</td>
<td>110.8 ± 0.7</td>
</tr>
<tr>
<td>11</td>
<td>108.1 ± 0.8</td>
</tr>
<tr>
<td>12</td>
<td>110.7 ± 0.6</td>
</tr>
<tr>
<td>14</td>
<td>112.1 ± 0.9</td>
</tr>
<tr>
<td>15</td>
<td>108.5 ± 0.9</td>
</tr>
<tr>
<td>16</td>
<td>112.0 ± 0.5</td>
</tr>
</tbody>
</table>

Table 1. Summary of Static Contact Angles, \(\theta\) (deg), Formed from \(n\)-Alkanethiolate SAMs Formed on Template-Stripped and As-Deposited Metal Surfaces
difference in θ_s for SAMs with similar terminal group orientation (Ag odds versus Au evens and Ag evens versus Au odds) and compared these differences to SAMs whose terminal groups are oriented differently (Ag odds versus Au odds and Au evens versus Ag evens). Figure 4 gives the values of θ_s for SAMO (Figure 4a) and SAME (Figure 4b) and a summary of all of the data (Figure 4c). We observe that contact angles derived from SAMO are statistically indistinguishable (average $|\Delta \theta_{\text{Ag odd} - \text{Ag even}}| \approx 1^\circ$; Student’s t test, $p > 0.1$). The small difference in θ_s indicates that its origin has a minor or no effect on the wetting properties of the SAMs. For SAME, however, we observed a statistically significant difference ($p < 0.01$) in the values of θ_s (average $|\Delta \theta_{\text{Ag even} - \text{Ag even}}| \approx 5^\circ$).

Surface Dipole versus Packing Density. The difference between SAME on both substrates showed the largest difference, suggesting that this difference probably captured all factors contributing to the odd—even effect in hydrophobicity of SAMs; i.e., this is a result of an additive effect, while the small difference in SAMO is due to a subtractive effect. We hypothesized that the packing density and surface dipole, because of orientation of the terminal moiety, could account for the origin of the odd—even effect because there were no major stereoelectronic perturbations upon n-alkanethiols binding on the metal surface to influence surface properties. Considering SAMs with similar orientation of the terminal moiety, there is a $\sim2^\circ$ difference in θ_s; that is, average $|\Delta \theta_{\text{Ag odd} - \text{Ag even}}| = \text{average } |\Delta \theta_{\text{Ag even} - \text{Ag even}}| \approx 2^\circ$). Because the molecular moieties on the surfaces are the same for these pairs of SAMs, one can argue that 2° is due to the difference in the packing density. Considering hypothetical SAME and SAMO with equal length on both substrate, the differences in values of θ_s between this pair of SAMs was calculated to be $\sim3^\circ$. Because the orientation of the surface moiety and, hence, dipole moments change upon substituting Ag with Au, we argue that the effect of the orientation of the surface moiety is $\sim3^\circ$, which is slightly larger than the influence of the packing density. We can therefore conclude that the odd—even effect in hydrophobicity is more influenced by the orientation of the surface moiety or surface dipoles than the packing density. Others have also observed differences in monolayer properties because of orientation of the terminal moiety.1,2,34

The increase in packing density with the change of substrate from Au to Ag should make the SAM interface with water more polyethylene-like, especially for SAME. Figure 4b shows that values of θ_s are lower for AgTS than those on AuTS. This indicates a decrease in hydrophobicity and a trend toward the contact angle of polyethylene ($88^\circ–103^\circ$).40,45 A decrease in θ_s because of an increase in packing density (tending to polyethylene-like structure), however, would be mitigated by a more dominant effect if such an effect exists in these SAMs. The decrease in θ_s for SAME occurs alongside changes in the orientation of the surface moiety, hence, surface dipole, from being along the surface normal to being tilted away from the surface normal. An analogous change, albeit in the reverse order, occurs with SAMO, and as such, by comparing θ_s for SAMO on Au and Ag, we generate a set of elementary simultaneous equations (from SAMO, $a + b = S^O$, and from SAME, $a - b = 1^\circ$), the solutions of which give us the contribution as a result of the packing density ($b = 2^\circ$) and effect of the surface dipole ($a = 3^\circ$). The surface dipole is therefore a more dominant effect than the change in the packing density (see Figure S1 of the Supporting Information). The effect of surface dipoles on wettability with polar liquids has previously been shown to follow a similar trend; that is, an increase in surface dipoles leads to an increase in θ_s.22,24,31 This paper highlights two key points relating to hydrophobicity that can be translated to wetting and other technologies relying on liquid contact with a SAM: (i) Experimental realization of the

Figure 4. Comparison of the hydrophobicity of odd and even n-alkanethiolates SAMs on AgTS and AuTS surfaces shows an additive (SAME) and subtractive (SAMO) coupling of two effects that dominate hydrophobicity of the SAM. (a) Static contact angles, θ_s, of SAMO on AgTS and AuTS show no statistically significant difference ($p > 0.1$). The insets show 5μL droplets of DI water on a C$_{16}$ SAM on either Au or Ag. (b) Similarly, θ_s from SAME shows a significant difference in the values of θ_s ($p < 0.01$). The insets show 5μL droplets of DI water on a C$_{16}$ SAM. (c) All values of θ_s derived from both surfaces over the two series of thiols. The difference in the contact angles allow us to decouple the effect of the packing density from surface dipoles and illustrate which one dominates in SAM hydrophobicity.
odd—even effect in wetting, here, hydrophobicity, depends upon the quality of the surface. (ii) Surface dipoles has a more dominant effect than the packing density in SAM hydrophobicity and may account for the high θ_o relative to hydrocarbon polymers. This paper also serves to clarify the apparent ambiguity in literature data regarding hydrophobicity of SAMs.

ASSOCIATED CONTENT

* Supporting Information

Materials and methods, schematic illustration of the effects of the packing density and change in orientation of the surface moiety on the hydrophobicity of SAMs (Figure S1), and sample images from each SAM that we measured (Figure S2). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

*Corresponding Author

*Telephone: +1-515-294-8581. E-mail: mthuo@iastate.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Iowa State University through startup funds and Joseph Healey Grant Award PGD-14-12 from the University of Massachusetts Boston. This work was performed in part using the facilities at Harvard University’s Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation (NSF) under NSF Award PHY-0646094.

REFERENCES

