Anisotropic thermal expansion in molecular solids: Theory and experiment on LiBH4

Thumbnail Image
Date
2014-04-21
Authors
Majzoub, E.
Johnson, Duane
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Johnson, Duane
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and Engineering
Abstract

We propose a reliable and efficient computational method for predicting elastic and thermal expansion properties in crystals, particularly complex anisotropic molecular solids, and we apply it to the room-temperature orthorhombic Pnmaphase of LiBH4. Using density-functional theory, we find thermal expansion coefficients at finite temperature, and we confirm them by temperature-dependent, in situ x-ray diffraction measurements. We also consider the effects of volume and pressure, as well as energy barriers for BH4− rotations and collective motions. Our combined study validates the theory and provides a better understanding of the structural behavior of LiBH4.

Comments

This article is from Physical Review B 89 (2014): 134308, doi:10.1103/PhysRevB.89.134308. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections