Competition between orthorhombic and re-entrant tetragonal phases in underdoped $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ probed by the response to controlled disorder

Erik I. Timmons
Iowa State University and Ames Laboratory, erikt@iastate.edu

Makariy A. Tanatar
Iowa State University and Ames Laboratory, tanatar@iastate.edu

K. Willa
Argonne National Laboratory

S. Teknowijoyo
Iowa State University and Ames Laboratory

Kyuil Cho
Ames Laboratory, kcho@ameslab.gov

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the [Condensed Matter Physics Commons](https://lib.dr.iastate.edu/condensed_matter_physics_commons)

Recommended Citation

Timmons, Erik I.; Tanatar, Makariy A.; Willa, K.; Teknowijoyo, S.; Cho, Kyuil; Konczykowski, M.; Cavani, O.; Liu, Yong; Lograsso, Thomas A.; Welp, U.; and Prozorov, Ruslan, "Competition between orthorhombic and re-entrant tetragonal phases in underdoped $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ probed by the response to controlled disorder" (2019). *Ames Laboratory Accepted Manuscripts*. 248.
https://lib.dr.iastate.edu/ameslab_manuscripts/248

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Competition between orthorhombic and re-entrant tetragonal phases in underdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ probed by the response to controlled disorder

Abstract
Low-temperature (22 K) irradiation with 2.5-MeV electrons, creating point defects affecting elastic scattering, was used to study the competition between stripe C-2 and tetragonal C-4 antiferromagnetic phases which exist in a narrow doping range around $x = 0.25$ in hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$. In nearby compositions outside of this range, at $x = 0.22$ and $x = 0.19$, the temperatures of both the concomitant orthorhombic/stripe antiferromagnetic transition T_{C2} and the superconducting transition T_{c} are monotonically suppressed by added disorder at similar rates of about 0.1 K/µΩ cm, as revealed through using resistivity variation as an intrinsic measure of scattering rate. In a stark contrast, a rapid suppression of the C-4 phase at the rate of 0.24 K/µΩ cm is found at $x = 0.25$. Moreover, this suppression of the C-4 phase is accompanied by unusual disorder-induced stabilization of the C-2 phase, determined by resistivity and specific heat measurements. The rate of the C-4 phase suppression is notably higher than the suppression rate of the spin-vortex phase in the Ni-doped CaKFe$_4$As$_4$ (0.16 K/µΩ cm).

Disciplines
Condensed Matter Physics

Authors
Erik I. Timmons, Makariy A. Tanatar, K. Willa, S. Teknowijoyo, Kyuil Cho, M. Konczykowski, O. Cavani, Yong Liu, Thomas A. Lograsso, U. Welp, and Ruslan Prozorov

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ameslab_manuscripts/248
Low-temperature (22 K) irradiation with 2.5-MeV electrons, creating point defects affecting elastic scattering, was used to study the competition between stripe C2 and tetragonal C4 antiferromagnetic phases which exist in a narrow doping range around $x = 0.25$ in hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$. In nearby compositions outside of this range, at $x = 0.22$ and $x = 0.19$, the temperatures of both the concomitant orthorhombic/stripe antiferromagnetic transition T_{C2} and the superconducting transition T_c are monotonically suppressed by added disorder at similar rates of about 0.1 K/μΩ cm, as revealed through using resistivity variation as an intrinsic measure of scattering rate. In a stark contrast, a rapid suppression of the C4 phase at the rate of 0.24 K/μΩ cm is found at $x = 0.25$. Moreover, this suppression of the C4 phase is accompanied by unusual disorder-induced stabilization of the C2 phase, determined by resistivity and specific heat measurements. The rate of the C4 phase suppression is notably higher than the suppression rate of the spin-vortex phase in the Ni-doped CaKFe$_2$As$_4$ (0.16 K/μΩ cm).

DOI: 10.1103/PhysRevB.99.054518

Cooper pair binding mediated by magnetic fluctuations [1] is actively discussed as a possible mechanism of superconductivity in several classes of unconventional superconductors including heavy fermions [2], high-T_c cuprates [3], and, more recently, iron-based superconductors [4]. A fingerprint of this model is the observation of the highest superconducting transition temperature, T_c, coinciding with a quantum critical point (QCP) where the temperature of the magnetic transition, T_N, goes to zero at a point in a T-x phase diagram, with x being a nonthermal control parameter such as doping, pressure, magnetic field, or disorder [1,5,7]. Strong magnetic fluctuations at the QCP lead to non-Fermi liquid behavior of all electronic properties, for example, logarithmic divergence of the heat capacity and T-linear electrical resistivity [5,6].

In iron-based superconductors, this phenomenology is clearly observed in isovalent P-substituted BaFe$_2$(As$_{1-x}$P$_x$)$_2$ (Ba122) [8–10]; however it fails in hole-doped Ba$_{1-x}$A$_x$Fe$_2$As$_2$ ($A =$ Na and K) compositions which have the highest T_c. Here, the suppression of the transition temperature T_{C2} of the orthorhombic antiferromagnetic phase with a stripe pattern of in-plane moments (C2 phase) [11,12] does not proceed monotonically to zero, but rather is interrupted by the emergence of a new tetragonal C4 magnetic phase below temperature T_{C4} [13–18]. Being in very close proximity to the highest T_c doping range, this phase may play an important, yet not understood, role in the superconducting pairing [19].

The C4 phase is also observed in other hole-doped 122-type compounds, such as Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ [20], Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ [21], and Ba(Fe$_{1-x}$Mn$_x$)$_2$As$_2$ [22]. The C4 phase in Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ was shown to be a double-Q spin-charge density wave, with a moment equal to zero on every second iron atom [23]. A similar C4 phase but with a different type of magnetic order was found in electron-doped CaK(Fe$_{1-x}$TM$_x$)$_2$As$_2$, with $TM =$ Co and Ni [24]. Theoretically, the origin of this phase has been attributed to itinerant magnetism [25,26], magnetic moments with effects of frustration [27], or the effects of spin-orbit coupling [28,29].

It was recently suggested that disorder can lead to a stabilization of the spin-charge density wave C4 phase as compared to the C4 spin-vortex state and the C2 phase in the phase diagram of the hole-doped compositions [30]. Motivated by this theoretical prediction, we report here a study on the effect of electron irradiation in hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$, with $x = 0.25$, revealing clear signatures of the C4 phase in temperature-dependent resistivity and heat capacity measurements. For reference, we also study the effect of electron irradiation on nearby compositions with $x = 0.19$ and $x = 0.22$ outside the C4 phase doping range. We find that disorder suppresses the C4 phase at a rate which is significantly higher than the suppression rate of the C2 phase in nearby compositions and in the spin-vortex phase of CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ [31]. It also leads to an unusual slight increase of T_{C2}, suggesting its stabilization with disorder. Our results clearly show competition between these two types of magnetic orders.

Single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ were grown as described in detail in Ref. [32]. Large, above 5 × 5 mm2 surface area, crystals were cleaved on both sides to a thickness of typically

*tanatar@ameslab.gov
\†prozorov@ameslab.gov
0.1 mm to minimize the variation of the K content with thickness. The cleaved slabs were characterized by electron-probe microanalysis with wavelength dispersive spectroscopy (WDS). The crystals from three different batches were used with WDS compositions determined as $x = 0.19, 0.22,$ and 0.25. The large slabs were cleaved into bars for four-probe resistivity measurements so that all samples were originating from the same slab of the crystal. Samples typically had a size of $2 \times 0.5 \times 0.1 \text{mm}^3$ and long and short sides corresponding to the crystallographic a axis and c axis, respectively. Low-resistance contacts to the samples were made by soldering Ag wires with tin [33,34]. The contacts were found to be both mechanically and electronically stable under electron irradiation. Four-probe resistivity measurements were performed in a Quantum Design PPMS. Specific heat was measured in a helium cryostat by using an ac calorimeter built on SiN membranes at frequencies in the 1-Hz range as described in Refs. [35,36].

For our study we selected samples with the sharpest features in the temperature-dependent resistivity $\rho(T)$ at concomitant tetragonal/orthorhombic and paramagnetic/C$_2$ antiferromagnetic transitions in samples $x = 0.19$ and 0.22. The largest problem however is finding samples with sharp features at the C$_2$ to C$_4$ transition for $x = 0.25$, which is extremely sensitive to sample-to-sample variation without detectable composition variations with $\Delta x \sim 0.003$. We therefore did all precharacterization of the samples with resistivity and only performed specific heat measurement on selected samples.

The samples for resistivity measurements during and after electron irradiation were mounted on a thin mica plate in a hollow Kyocera chip, so that they could be moved between the irradiation chamber and the resistivity setup (in a different 4He cryostat) without disturbing the contacts. The low-temperature 2.5-MeV electron irradiation was performed at the SIRIUS Pelletron linear accelerator operated by the Laboratoire des Solides Irradiés (LSI) at the Ecole Polytechnique in Palaiseau, France [37]. The Kyocera chip was mounted inside the irradiation chamber and was cooled by a flow of liquid hydrogen to $T \approx 22$ K in order to remove excess heat produced by relativistic electrons upon collision with the ions. The flux of electrons amounted to about $2.7 \mu\text{A}$ of electric current through a 5-mm-diameter diaphragm. This current was measured with the Faraday cup placed behind a hole in the sample stage, so that only transmitted electrons were counted. The irradiation rate was about $5 \times 10^{-6} \text{C/(cm}^2\text{s)}$ and large doses were accumulated over the course of several irradiation runs. Throughout the manuscript we use “pristine” and “unirradiated” interchangeably to describe samples that were not exposed to electron radiation.

Three samples selected, A, B, and C, had sharp maximums in temperature-dependent resistivity derivatives at T_{C_4} equal to 33 K (A) and 35 K (B and C) and had minimums at T_{C_2} equal to 60 K (A) and 56.5 K (B and C), respectively. The selected sample A of $x = 0.25$ composition was irradiated multiple times, adding doses in small steps and tracking the fine evolution of its temperature-dependent resistivity to determine T_{C_2}, T_{C_4} and the superconducting T_c. The sample was extracted from the irradiation chamber following each irradiation dose step and its temperature-dependent resistivity was measured $ex situ$ after annealing at room temperature. This annealing, however, did not remove residual disorder, so that the sample resistance gradually increased in successive runs. A second sample B with slightly higher $T_{C_4} \sim 35$ K, suggesting somewhat higher K content was mounted on the same chip and underwent the same irradiation procedure; however, it was not measured in the intermediate steps. After an accumulation of a significant dose and the ensuing characterization by resistivity which produced results that were qualitatively consistent with sample A (we found a slight increase in T_{C_2} by about 2 K), a small piece (100 $\mu\text{m} \times 160 \mu\text{m}$) was cut from the area between potential contacts to be used for microcalorimetric measurements. Another pristine sample C, having identical T_{C_4} and T_{C_2} with sample B, was measured as a reference sample in the specific heat apparatus. The samples of other compositions $x = 0.19$ and $x = 0.22$ were irradiated without intermediate measurements, receiving the maximum dose in one run.

In Fig. 1 we show the temperature-dependent resistivity of selected samples with $x = 0.19, 0.22,$ and 0.25 in the pristine state before irradiation. The room-temperature resistivity of the samples was set to 300 $\mu\Omega\text{cm}$, the statistically significant value as determined on a big array of crystals [32]. The actually measured values for the individual samples were within the 10% uncertainty of the geometric factor determination. The $\rho(T)$ curves show the typical behavior of hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ [32,38], with a broad crossover at around 200 K. Samples with $x = 0.19$ and $x = 0.22$ show a small acceleration of resistivity decrease upon cooling through T_{C_2} and a rather sharp superconducting transition at T_c. The T_{C_2} feature is most clearly seen as a sharp feature in the temperature derivative of the resistivity, $d\rho/dT$ [Fig. 1(b)]. The $\rho(T)$ of the sample with $x = 0.25$ shows a slight step up at T_{C_2}, leading to a sharp minimum in resistivity derivative. The resistivity of the samples just above T_c decreases monotonically with x from about 40 $\mu\Omega\text{cm}$ in $x = 0.19$ to 30 $\mu\Omega\text{cm}$ in $x = 0.25$ and the residual resistivity ratios increase from about 7 to 10, respectively. The T_{C_2} feature is shifting down in temperature with increasing x reaching $T_{C_2} = 60$ K for $x = 0.25$ [the same feature in samples B and C is observed at 56.5 K in resistivity and at 57.4 K in heat capacity (sample C), indicating its bulk nature, see Fig. 3(a) below]. In Fig. 1(c) we plot the characteristic temperatures as determined from resistivity measurements (circles represent T_{C_2} and open up-triangles represent T_c as determined from onset criterion) as a function of x in comparison with the phase diagram by Böhmer et al. [15] (lines in the figure). The position of the $x = 0.25$ sample in this phase diagram does not follow the T_{C_2} line. However, if we allow for a small variation of x for our $x = 0.25$ WDS sample to match T_{C_2} with the value reported by Böhmer et al. [15], we simultaneously match the T_{C_2} feature of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (red solid square) as well. The composition difference amounts to approximately 1%, which is presumably coming from the difference in calibrations in the composition analysis between WDS (our case) and energy dispersive X-ray spectroscopy (as used by Böhmer et al. [15]). The onset of the resistive transition to the superconducting phase in samples A and B (not shown) occurs at 30 K with no indication of the T_c depression reported in Ref. [15].
In Fig. 2 we show the evolution of the temperature-dependent resistivity $\rho(T)$ with electron irradiation. The irradiation increases the resistivity of the samples, with the increase being nearly temperature independent above T_{C2}, but strongly temperature dependent below T_{C2}. This difference in response to controlled disorder above and below T_{C2} is found in other BaFe$_2$As$_2$-based materials, P-doped [39], Ru-doped [40,41], and K-doped [42,43]. Since the resistivity above T_{C2} roughly obeys the Matthiessen rule, we used the postirradiation increase of resistivity at the set temperature $T = 95$ K (dashed lines in the left-hand panels in Fig. 2) as an intrinsic measure of disorder. The electron dose dependence of the resistivity for samples $x = 0.22$ (blue circles) and $x = 0.25$ (green squares) is shown in the inset in Fig. 2(a).

Irradiation suppresses T_{C2} in samples with $x = 0.19$ (not shown) and $x = 0.22$ [Fig. 2(b)]. This is similar to the results of previous studies for all types of substitutions in BaFe$_2$As$_2$ [39–43]. The response to irradiation in the $x = 0.25$ sample is qualitatively different [Fig. 2(c)]. While the superconducting transition temperature is monotonically suppressed with increasing resistivity, the T_{C4} feature moves to lower temperatures significantly faster than T_{C1} and eventually becomes indistinguishable from the superconducting transition. Furthermore, the T_{C2} feature is not suppressed with increasing scattering, but, in fact, a slight increase of T_{C2} with irradiation is found in heat capacity measurements.

The findings in resistivity measurements are well matched by the heat capacity measurements. In the pristine state [Fig. 3(a)], clear changes of slope are seen in the C/T vs
very close to each other and to the rate of the conducting transition suppression with disorder, 0.091, 0.118, and x sample with the sample with x data for the sample with x characteristic temperatures for Ba 1

T irradiation with 5.045 C/cm². The right-hand insets zoom in on the Tc phase transition, and the left-hand insets zoom in on the low-temperature transitions.

T plot at Tc2 = 57.4 K and Tc4 = 36.6 K as well as two low-temperature features corresponding to the superconducting transition and possibly the reentrant C2 phase. These features are shown with crossed symbols in Fig. 1 above. Tc4 is strongly suppressed after irradiation, faster than the superconducting transition, while the C2 transition becomes sharper and moves slightly up in temperature.

In Fig. 4 we summarize our observations as plots of characteristic temperatures for Ba1−xKxFe2As2 as a function of change of resistivity after irradiation. Figure 4(a) shows data for the sample with x = 0.19, Fig. 4(b) shows data for the sample with x = 0.22, and Fig. 4(c) shows data for the sample with x = 0.25. Note that the rates of the superconducting transition suppression with disorder, 0.091, 0.118, and 0.098 K/μΩ cm for x = 0.19, 0.22, and 0.25, respectively, are very close to each other and to the rate of the Tc2 suppression, 0.096 and 0.105 for x = 0.19 and x = 0.22. The rate of the C4 phase suppression in the x = 0.25 sample, 0.21 K/μΩ cm in resistivity and 0.24 K/μΩ cm in heat capacity measurements, is about two times faster than that of the C2 phase suppression in the x = 0.19 and x = 0.22 samples. This rate is also significantly higher than the rate of C3 spin-vortex phase suppression in CaK(Fe1−xNi)xAs2, 0.16 K/μΩ cm [31]. A slight increase of Tc2 in the x = 0.25 sample is found after irradiation in heat capacity measurements.

It is most natural to explain our findings as evidence for competition between the C2 and the C4 phases, with a suppression of the C4 phase leading to a stabilization of the C2 phase. Interestingly, this behavior is found for a certain parameter range in the calculations of Hoyer et al. [30,44], though this paper considers the case of phase competition near the magnetic transition temperature as opposed to the case of the C4 phase existing deep in the domain of the C2 phase as found in our experiment.

In conclusion, we find that controlled disorder introduced by low-temperature irradiation with relativistic 2.5-MeV electrons rapidly suppresses the transition temperature between antiferromagnetic C2 and C4 phases and leads to the relative stabilization of the C2 phase. This behavior can be found for the parameter range characterized by weak nesting in the itinerant electron magnetism model by Hoyer et al. [30], though the phase stability relations were considered only at the transition temperature for magnetic ordering. Our findings suggest that further theoretical analysis that will consider possible first-order transition between two phases, and hence phase coexistence and possible separation, may be necessary.

We thank R. M. Fernandes, P. P. Orth, and J. Schmalian for useful discussions. This work was supported by the Laboratory Directed Research and Development (LDRD) program of The Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. We thank B. Boizot and all the SIRIUS team for operating electron irradiation at the SIRIUS facility at École Polytechnique [supported by the EMIR (Réseau National d’Accélérateurs pour les Études des Matériaux sous...
Engineering Division. K.W. acknowledges support from the Swiss National Science Foundation through the Postdoc Mobility program.

[44] This can be seen most clearly as a slight expansion of the (green, SM) domain of the C$_2$ phase in the central area of Fig. 2 in Hoyer et al. [30].