Metabolic analysis of wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose

Thumbnail Image
Date
2010-01-01
Authors
Murarka, Abhishek
Clomburg, James
Moran, Sean
Shanks, Jacqueline
Gonzalez, Ramon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Shanks, Jacqueline
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of 13C-labeled and -unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional 13C, 1H NMR spectroscopy. Metabolite balancing, biosynthetic 13C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO 2 and the calculated CO 2 evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO 2 for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO 2, thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO 2 and H 2) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO 2 generation via PDHC and ox-PPP revealed that the PDHC route is more carbon- and energy-efficient, in agreement with its beneficial role in cell growth.

Comments

This research was originally published in Journal of Biological Chemistry. Abhishek Murarka, James M. Clomburg, Sean Moran, Jacqueline V. Shanks, and Ramon Gonzalez.JMetabolic Analysis of Wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient Derivative Reveals the Role of PDHC in the Fermentative Metabolism of Glucose. Journal of Biological Chemistry. 2010;Vol.:285, pp.31548-31558.© the American Society for Biochemistry and Molecular Biology.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections