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CHAPTER 8 VELOCITY PROFILE MEASUREMENTS 

The data presented below is the final piece of information required before 

solving the inverse problem for the elastic properties of a composite plate. The first 

section (8.1) presents the experimental velocities and section 8.2 compares the 

data to the laminate theory predictions. 

Density was a measurable quantity required for the theoretical prediction of 

velocity. A sample from each plate was weighed and measured. From the samples 

an average density was recorded as 1.484 glee. A value of 1.5 glee was used in all 

theoretical calculation since it more appropriately states the accuracy of the 

measurement. 

8.1 Velocity Profiles 

The experimental data was collected as outlined in Chapter 4. All leaky 

Lamb wave data presented in this thesis was taken in a single session without 

stopping or changing any factor of the experiment other than the sample being 

tested. The data presented here was the third attempt at collecting the required 

information due to inconsistencies and a few mistakes in the earlier attempts. A 

great deal was learned in the earlier attempts and helped to make the final data 

collection as accurate as possible. Figs. 8.1 and 8.2 are the results plotted with the 

laminate theory calculation included. 
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8.2 Comparison to Composite Laminate Code Predictions 

Comparisons with theory were very easy to make. As Figs. 8.1 and 8.2 

show, the experimental data and the theoretical curve are very similar for each 

particular laminate. The [(0,90)3]s show the expected trends and the velocity 

profiles do look deceptively like the patterns in Fig. 7.7. As stated earlier, a close 

look will show that ply errors is probably not the source of the small differences in 

Fig. 8.1. 

One possible source of error is the 2 dimensional composite laminate model 

we are using. The plates are thin, but assumptions have been made. Also, we 

have assumed a homogeneous anisotropic material to propagate through. In 

reality, the fiber and matrix are interacting with the waves as they travel and may 

have an affect we do not yet understand. In spite of these assumptions, the match 

between theory and experiment is a very good one. 

In Fig. 8.2, the [0,+45,-45,90]8 laminate's velocity is shown. This case is not 

as interesting to look at. Theoretically, the elastic properties of this quasi-isotropic 

plate do not change. Therefore the laminate theory velocity does not show any 

changes. This has been shown to be incorrect since this quasi-isotropic laminate is 

not truly isotropic. The values do remain within approximately 10% of the 

experimental values, however. The random variation of the experimental data may 

be masking this feature in the experimental velocities. The velocity and E1 should 
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decrease between the ply orientations that are present. In this case, a decrease in 

velocity would be expected at 22.5 degrees, 67.5 degrees, and so on. 

In section 9.3 this topic is also discussed. Figs. 9.5 through 9.7 show a 

decrease in Young's modulus in both the mechanical testing and the estimated 

values. This in spite of the fact that the experimental velocities changed very little if 

at all. The estimated values were generated using ultrasonic data and a least 

squares minimization routine which is described in the following section. 
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CHAPTER 9. SIMPLEX LEAST SQUARES ERROR MINIMIZATION 

There are many minimization routines available in books and software 

libraries that can be used. For this work an even simpler solution was used. The 

mathematics package MA TLAB has a function called fmins which uses a Simplex 

search routine to minimize the input function. The following sections briefly 

discusses the simplex search method, walks the reader through a sample 

minimization using MATLAB and then compares the results with mechanical test 

results and theory. 

9.1 Simplex Method 

All general purpose nonlinear algorithms currently available have one 

inconvenient feature. They are recursive, meaning that the unknown parameters 

must be adjusted in an iterative way, with little advance knowledge of the number of 

iterations that will be required for convergence, or if it will converge at all. The lone 

exception is the simplex method, which always converges. It is also an efficient 

method that can be adapted to solve almost any linear optimization problem. 

9.2 Estimation Procedure using MATLAB 

In chapter 6 the relationship between velocity, density and the elastic 

properties E1, v12 and v 21 was presented. It is listed here again. 
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(9.1) 

If we now define a least squares function F, based on Eqn. (9.1), as 

(9.2) 

we have a function which can be minimized. Requires inputs include the two 

experimental velocities c1 and c.z, density (p), and the elastic properties E1, E2. v12 

and v21 calculated by the laminate theory from chapter 6. From these starting 

values MATLAB's fmins function minimizes F by varying E1, E2. v12 and v21 until a 

solution is reached. 

The MA TLAB interface is very easy to use and a sample calculation is listed 

in Fig. 9.1. The function F in Fig. 9.1 will not look familiar unless we rewrite Eqn. 

(9.2) in a format suitable for the minimization routine. Let 

and 

x(1) = E1 

x(2) = Ez 

Substituting these values into Eqn. (9.2) we get 

F = [x(1)- K ( x(3) 1]2 + [x(2)- K ( x(3) 1]2 1 1.0E1 1J 2 1.0E1 1J (9.3) 



51 

which is the function F listed in Fig. 9.1 below. Notice that in order to maintain a 

balance between the variables while providing the routine with inputs of the same 

order of magnitude, it was necessary to multiply the Poisson ratio term by a 1 E11 

factor and then divide it out from the product after the minimization. Calculated 

values for K1 and K2 have also been inserted. 

Line 1 is the input of F, the function to be minimized. Line 3 is the input of 

the laminate code values for E1, v12 and v21. These values are the starting point for 

the minimization. Lines 2 and 4 are MATLAB's echo's of the inputs from lines 1 and 

3. On line 5 is the command to minimize F and 6 is the solution 

1. » f = '(x(1)- 87.77E9*x(3)/1 E11)"2 + (x(2)- 87.36E9*x(3)/1 E11)"2' 

2. f =(x(1)- 87.77E9*x(3)/1E11)"2 + (x(2)- 87.36E9*x(3)/1E11)"2 

3. )) X= [95.98E9,95.98E9,99.91 E9] 

4. x= 

1.0e+010 * 

9.5980 9.5980 9.9910 

5. ,, fmins(f,x) 

6. ans = 

1.0e+011 * 

0.9387 0.9343 1.0695 

Figure 9.1 A sample minimization using the fmins function in MATLAB 
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,~ 

The procedure above completes the minimization of F but v12 and v 21 still 

need to be separated from x(3). It can be easily shown that the following relations 

are true and complete the elastic property estimation procedure. 

u = ~(1- x(J)) and u - E2 (1- x(J)) 
12 E2 1.0E11 21 

- E1 1.0E11 

In line 6 of Fig. 9.1 a weakness of the current algorithm is exposed. In this example, 

X(3) has been returned as 1.0695. Referring back to the definition of X(3) we find 

that a value of greater then one is impossible. Simplex does not understand this 

limit and tends to pull X(3) above one if the starting value of X(3) is too close to 1. 

For the work done here, X(3) was never input above a value of 0.95 (E11) and this 

worked well. 

Another point that needs to be addressed is a symmetry assumption used in 

the estimation procedure. Experimental velocities were measured from 0 to 90 

degrees only. The problem begins at 10 degrees. C1 is simple but C2, at 100 

degrees of rotation, is not available. C2 is available at 80 degrees however, if a 

symmetry assumption is allowed. This process was continued to 20 degrees and 70 

degrees, and 30 and 60 degrees, and so on. The results show improvements that 

are discussed below. 
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9.3 Results and Comparison with Mechanical Test Results and Theory 

In this section, the entire collection of data is presented for all six plates. A 

few differences in data collection need to be considered before making comparison. 

Experimental velocities were recorded from 0 to 90 degrees at 5 degree intervals 

and the theoretical results were (theoretically) continuous. The mechanical data 

however was limited by plate size to 6 angles from 0 to 45 degrees. Because of 

this, the following plots contain experimental data points beyond 45 degrees which 

are the reflected image of the first six points. All of the plates were symmetric about 

a 45 degree angle so this is a fair method of comparing the estimation results to 

experimental results The plots can be found it Figs. (9.2) through (9.7). They are 

well labeled and should not cause any confusion despite the large amount of 

information they contain. 

The first thing that jumps out of the plots is the consistent overestimation of 

Young's modulus at 32 out of 36 data points. Since the laminate code values are 

also too high at the same 32 data points it would be reasonable to assume that the 

stiffness values input into the computer program were too high. However, material 

characterization has proven the inputs to be appropriate estimates 

Large variations in the Poisson's ratio estimates are also obvious in many of the 

plots. Figs. 9.5, 9.6, and 9. 7 all have large variations present in the estimates. This 

is just a fact of life with composite materials. The experimental Young's moduli for 

these figures were a pleasant surprise. Each of the [0,+45,-45,90]s laminates 
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Figure 9.2 Elastic properties comparison plots for plate #1 
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Figure 9.3 Elastic properties comparison plots for plate #2 
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Figure 9.4 Elastic properties comparison plots for plate #3 
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Figure 9.6 Elastic properties comparison plots for plate #5 
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Figure 9.7 Elastic properties comparison plots for plate #6 
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showed the decrease in modulus at 22.5 degrees. It is also curious that the 

mechanical tests indicate decreases in the stiffness of the laminates around 22.5 

degrees and 67.5 degrees yet the velocity profiles do not show any significant 

trends. Since velocity is a function of Young's Modulus and Poisson's ratio, it was 

possible that corresponding decreases in v12. v21 could have compensated for 

decreased E1• The data does not support this idea. Currently, the only explanation 

for approximately constant quasi-isotropic velocity profiles is the random variations 

in the data. Experimental error and noise from other sources may be masking the 

changes. 

Another feature of the plots is visible when looking closely at the angles that 

were used together as the 1 and 2 directions in the minimization process. A good 

example of what is happening can be found in Figs. 8.1 and 9.2. For plate #1 in 

Fig. 8.1, at 20 degrees the measured experimental velocity is considerably higher 

than the laminate code prediction, but at 70 degrees the velocity is slightly below 

the 1aminate code prediction. In Fig. 9.2 this same relationship is present in the 

Young's modulus estimate. The estimated value at 20 degrees is slightly above the 

laminate code prediction while at 70 degrees Young's modulus is now below the 

laminate code prediction. The minimization process has lowered E1 where the 

velocity was lower and it has increased E1 where the velocity was higher than the 

laminate code value. This is the desired result. 



61 

The example also illustrates another feature of the calculation. As the least 

squares function is minimized, the Young's modulus variables slowly decrease in 

value. In fact, the larger the discrepancies in the two velocities, the more the values 

are decreased by the simplex method. In most cases where large differences in the 

velocities are present, Poisson's ratio is also adversely affected. For plate #4 (Fig. 

8.2 and 9.5) at 20 and 70 degrees again, there is a large difference between the two 

velocities, and E1 and v12 are greatly reduced. Future work should include a method 

to limit this drift in the solutions. 

An interesting relationship between E1, E2 and c1 and c.z can be derived as 

and in all cases the minimization has solved this relation to much less than a one 

percent error. Simplex has conformed to this relationship in all cases, but large 

velocity differences are a problem. Since these are the change we arE:t most 

interested in a better search routine may be needed. 
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CHAPTER 10. CONCLUSIONS 

10.1 Summary 

This thesis has described the fabrication and testing of composite samples 

for the purpose of solving the inverse problem for the elastic properties of thin 

plates immersed in a fluid. The solution method chosen was a least squares 

minimization which estimated the elastic properties using the relationship found in 

Eqn. 6.25. This equation relates the elastic properties and the Leaky Lamb wave 

velocity in a form which can be minimized when two perpendicular experimental 

velocities are available. Inputs used were experimental Lamb wave velocities, 

density arid elastic properties obtained from composite laminate theory. 

Results show that the current simplex routine can improve the accuracy of 

elastic properties obtained from laminate theory using experimental velocity 

measurements. Each estimation uses two sets of data which are perpendicular to 

each other. Young's modulus is increased for the direction with the highest leaky 

Lamb wave velocity while it is decreased in the other direction. This method 

considers only two angles of rotation at a time. A method which simultaneously 

considered all points relative to each other may provide better results. The result 

here were good but can be improved with further study. 

The current routine does introduce its own errors when differences between 

the two perpendicular velocity measurements become large. An examples has 
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been provided in section 9.3 and finding a method which limits the drift of variables 

has been suggested for continued work. 

A few curiosities were also found. The velocity does not appear to be 

sensitive to the small changes in elastic properties in the [0,+45,-45,90]8 laminates. 

Theory suggests that a decreases in E and an increase in v will reduce velocity. 

None was observed, but more study would be required to state that velocity is not 

affected as expected. The other interesting result found involves the very good 

accuracy with which the velocity was predicted. This is interesting because the 

· mechanically tested Young's modulus was consistently lower than the theoretical 

calculation. Poisson's ratio did not show a corresponding decrease which could 

compensate for the low Young's modulus values. The velocities should have been 

lower if we believe the relation derived. This result may point to the need for 

considering out-of-plane elastic properties. 

10.2 Future Work 

Other minimization techniques should be studied to find a method that does 

not slowly decrease the Young's modulus value when the input velocities are 

significantly different. Also, a method of relating all angles of rotation 

simultaneously would be helpful. 
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A study of the out of plane elastic properties should be made to test the 

validity of the in plane velocity relation in Eq. (6.25). The assumptions made here 

have been accepted for many years but improvements may also be possible. 

Experiments could also be done to study the affects of propagation distance 

in the plate. Some earlier work indicated that longer propagation paths may result 

in an averaged value of velocity for the entire length traveled. Long paths resulted 

in smoother velocity profiles that closely followed the laminate code prediction while 

short paths showed distinct changes over the same areas. 

The analysis could also be extended to less conventional stacking 

sequences and curved plates. Unsymmetrical laminates should prove interesting 

since any lamb waves traveling in the plate would be distorted by the uneven 

distribution of stiffness through thickness of the plate. Curved surfaces would also 

be interesting since most practical applications would not be perfectly flat. 

Plahs are also being made for publishing of this work in an appropriate 
: \ 

journal. A few possibilities have been identified but no firm decisions have been 

made. 
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APPENDIX A: DISPERSION RELATION SIMPLIFICATION AT LOW FREQUENCY 

The symmetric dispersion relation for a submerged orthotropic plate is 

(A1) 

If we take the limit of Eqn. (A1) as 

we can eliminate or simplify all terms in the equation. The following term goes to 

zero in the limit as ro~O. 

. The remalning terms 

(A2) 

·can be simplified. The ratio of tangents can be expanded by Taylor series and the 

limit taken. Since 



n 

n 
R 
n 
R 

ll 
n 
u 
u u 
n " . u 

68 

Eqn. (A3) becomes 

(A3) 

Note: in the following derivation, C11 represents C11/p. The same is true for 

Recall that 

and 

Inserting the these equations into Eqn .. (A2) 

fp (fm +Rm)(C33fmRp +C13) 

fm = (fp +RpXc33fmRm +C13) 

Cross multiplication and simplification yield 

(A4) 

.• 
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From previous definitions 

and 

c2
- C11 - C55f~ 
Css +C13 

Rm RP c2
- C11 - C55f~ c2

- C11 - C55f; 

fm -~ = (Css +C13}f~ - (Css +C13}f; 

= (c2
- C11 )(t; -f~) 

(C55 + C13}f~f; 

Substituting Eqns. (AS) and (AS) into (A4) gives 

(AS) 

(AS) 

Putting back the density term, simplifying and solving for the wave speed 

(A7) 

Appendix B shows that for an orthotropic material 

(A8) 
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Substituting Eqn. (AS) into (A7) yields 

This is the relation used to relate Leaky Lamb wave velocity to the elastic 

properties of thin composite plates. 
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> APPENDIX B: ORTHOTROPIC STIFFNESS MATRIX DERIVATION 

THE FOLLO\VTNG IS A RECORDED MAPLE V SESSION 

ORTHOTROPIC COMPLIANCE MATRIX INPUT 

> with(linalg); 
Warning: new definition for norm 
Warning: new definition for trace 

[BlockDiagonal, GramSchmidt, JordanBlock, Wronskian, add, addcol, addrow, adj, adjoint, 
angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, col, co/dim, 
co/space, co/span, companion, concat, cond, copyinto, crossprod, curl, definite, delcols, 
de/rows, det, diag, diverge, dotprod, eigenvals, eigenvects, entermatrix, equal, exponential, 
extend, ffgausselim, fibonacci, frobenius, gausselim, gaussjord, genmatrix, grad, hadamard, 
hermite, hessian, hilbert, htranspose, ihermite, indexfunc, innerprod, intbasis, inverse, 
ismith, iszero,jacobian,jordan, kernel, laplacian, leastsqrs, linsolve, matrix, minor, 
minpoly, mulcol, mulrow, multiply, norm, normalize-, nul/space, orthog, permanent, pivot, 
potential, randmatrix, randvector, range, rank, ratform, row, rowdim, rowspace, rowspan, 
rref, scalarmul, singularvals, smith, stack, submatrix, subvector, sumbasis, swapcol, 
swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpotent, vectdim, vector] 

> G12:=E1/(1 +nu21 ); 

> G31:=E3/(1+nu13); 

> G23:=E2/(1+nu32); 

El 
012 := 1 + nu21 

E3 
G31 := 1 +nul3 

E2 
023 := 1 + nu32 

> m :=matrix(6,6,[1/E1 ,-nu21/E2,-nu31/E3,0,0,0,-nu12/E1, 1/E2,;.nu32/E3,0,0,0,-nu13/E 
> 1,-nu23/E2, 1/E3,0,0,0,0,0,0, 1/G23,0,0,0,0,0,0, 1/G31 ,0,0,0,0,0,0, 1/G12)); 
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1 nu21 nu31 

0 0 0 - --
EJ E2 E3 
nu12 1 nu32 

0 0 0 --- - ---
El E2 E3 

nu13 nu23 1 
0 0 --- --- - 0 

El E2 E3 m:= 
0 0 0 

1 +nu32 
0 0 

E2 

0 0 0 0 
1 +nu13 

0 
E3 

0 0 0 0 0 
1 +nu21 

El 

TAKING THE INVERSE OF THE STIFFNESS MATRIX TO GET THE 
STIFFNESS MATRIX 

> minv:=inverse(m); 
minv := 

-1+nu23nu32 El _ (nu21+nu23nu3l)El _ (nu21nu32+nu3J)El 
0 0 0 

%1 ' %1 ' %1 ' ' ' 
_ (nu12+nu13nu32)E2 (-1+nu13nu31)E2 _ nu32+nul2nu31 E2 

0 0 0 
%1 ' %1 ' %1 ' ' ' 

_ (nu12nu23+nu13)E3 _ (nu23+nu13nu2J)E3 (-1+nu12nu21)E3 
0 0 0 

%1 ' %1 ' %1 ' ' ' 
E2 

0, 0' 0' 1 +nu32' 

0, 0, 0' 0, 

0' 0 ' 0' 0, 

0, 

E3 
1 +nu13' 

0' 

0 

0 

El.) 

1 +nu21 

%1 := -1 +nu23 nu32 +nu12 nu21 +nu12 nu23 nu31 +nu13 nu21 nu32 +nu13 nu31 

PULLING OUT THE INDIVIDUAL COEFFICIENTS 

> c11 :=minv[1, 1 ]; 
ell:= (-1 +nu23 nu32)El 

-1 +nu23 nu32 +nu12 nu21 + nu12 nu23 nu31 +nu13 nu21 nu32 +nu13 nu31 
> c13:=minv[1 ,3]; 

clJ ·= _ nu32 +nu31 El 
· -1 +nu23 nu32 +nu12 nu21 +nu12 nu23 nu31 +nu13 nu21 nu32 +nu13 nu31 
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> c33:=minv[3,3]; 

c33 := ( -1 + nu12 nu21) E3 
-1 + nu23 nu32 +nu12 nu21 + nu12 nu23 nu31 + nu13 nu21 nu32 + nu13 nu31 

PUTTING THE COEFFICIENTS rNTO THE VELOCITY RELATION 

> c2:=(c11/rho)-(c13A2)/(rho*c33); 

c2 := (-1 +nu23 nu32)El _ 
( -1 +nu23 nu32 +nu12 nu21 +nu12 nu23 nu31 +nu13 nu21 nu32 +nu13 nu31) p 

(nu21 nu32 + nu31)2 EJ 2 /( 
( -1 + nu23 nu32 + nu12 nu21 + nu12 nu23 nu31 + nu13 nu21 nu32 + nu13 nu31) p 
( -1 + nu12 nu21) E3) 

> sc2:=simplify(c2); 

> 

sc2 :=- El ( -E3 + E3 nu12 nu21 + E3 nu23 nu32- E3 nu23 nu32 nu12 nu21 

+El nu21 2 nu322 + 2 El nu21 nu32 nu31 +El nu3I 2)/( 
( -1 + nu23 nu32 + nu12 nu21 + nu12 nu23 nu31 + nu13 nu21 nu32 + nu13 nu31) p 
(-1 +nu12 nu21)E3) 

MISCELLANEOUS SUBSTITUTIONS TO GET A SIMPLIFIED RESULT 

> a:=simplify(subs(E1 =(nu13/nu31 )*E3,sc2)); 

a:=- nu13 E3 (-nu31 +nu12 nu21 nu31 +nu23 nu32 nu31- nu23 nu32 nu12 nu21 nu31 

+ nu13 nu21 2 nu322 + 2 nu13 nu21 nu32 nu31 + nu13 nu3I 2) j(nu3J 2 

( -1 + nu23 nu32 + nu12 nu21 + nu12 nu23 nu31 + nu13 nu21 nu32 + nu13 nu31) p 

( -1 + nu12 nu21)) 
> b:=simplify(subs(E3=(nu31/nu13)*E1 ,a)); 

b :=- El ( -nu31 + nu12 nu21 nu31 + nu23 nu32 nu31- nu23 nu32 nu12 nu21 nu31 

+ nu13 nu21 2 nu322 + 2 nu13 nu21 nu32 nu31 + nu13 nu3I 2)/(nu31 
( -1 + nu23 nu32 + nu12 nu21 + nu12 nu23 nu31 + nu13 nu21 nu32 + nu13 nu31) p 

( -1 +nu12 nu21)) 

SUBSTITUTING IN THE INFINITE PLATE AND PLANAR WAVE 
ASSUMPTIONS SOLUTION FOR THE LEAKY LAMB WAVE VELOCITY 

> Lamb_Wave_Velocity_Squared:=simplify(subs(nu23=0,nu32=0,b)); 
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Lamb Wave Velocity Squared:=- ( ~l 
- - - -1 + nu 2 nu21 ) p 

SfMPLIFYING EACH INDIVIDUAL STIFFNESS COEFFICIENT 

> C11 :=simplify(subs(nu23=0,nu32=0,c11 )); 

Cll :=- EJ 
-1 +nu13 nu31 +nu12 nu21 

> C12:=simplify(subs(nu23=0,nu32=0,minv[1 ,2])); 

Cl2 := _ nu21 El 
-1 + nul3 nu31 + nu12 nu21 

> C13:=simplify(subs(nu23=0,nu32=0,c13)); 

CJ3 ·= _ nu31 EJ 
· -1 + nu13 nu31 + nu12 nu21 

> C21 :=simplify(subs(nu23=0,nu32=0,minv[2, 1 ])); 

C2l := _ nu12 E2 . 
-1 +nu13 nu31 +nu12 nu21 

> C22:=simplify(subs(nu23=0,nu32=0,minv[2,2])); 

C22 := ( -1 + nu13 nu31) E2 
-1 +nu13 nu31 +nu12 nu21 

> C23:=simplify(subs(nu23=0,nu32=0,minv[2,3])); 

C23 := _ nu12 nu31 E2 
-1 +nu13 nu31 +nu12 nu21 

> C31 :=simplify(subs(nu23=0,nu32=0,minv[3, 1])); 

C3J := _ nu13 E3 
-1 +nul3 nu31 +nu12 nu21 

> C32:=simplify(subs(nu23=0,nu32=0,minv[3,2])); 
nul3 nu21 E3 

C32 
-1 + nu13 nu31 + nu12 nu21 

> C33:=simplify(subs(nu23=0,nu32=0,c33)); 
C33 ·= ( -1 +nu12 nu21)E3 

· -1 + nu13 nu31 + nu12 nu21 

> C44:=simplify(subs(nu23=0,nu32=0,minv[4,4])); 
C44:=E2 

> C55:=simplify(subs(nu23=0,nu32=0,minv[5,5])); 
E3 

CSS := 1 +nu13 

> C66:=simplify(subs(nu23=0,nu32=0,minv[6,6])); 
El 

C66 := I + nu21 
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ASSEl'vfBLED ORTHOTROPIC STIFFNESS MATRIX 

> K:=matrix{6,6,[C11 ,C12,C13,0,0,0,C21 ,C22,C23,0,0,0,C31 ,C32,C33,0,0,0,0,0,0,C44, 
> o,o,o,o,o,o,css,o,o,o,o,o,o,cssn; 

K:= 
El nu21 El nu31 EJ 

0 0 0 
%1 %1 %1 

nul2E2 ( -1 + nu13 nu31) E2 nu12 nu31 E2 
0 0 0 

%1 %1 %1 
nu13E3 nu13 nu21 E3 { -1 + nu12 nu21) E3 

0 0 0 
%1 %1 %1 
0 0 0 E2 0 0 

0 0 0 0 
E3 

0 
l+nu13 

0 0 0 0 0 
El 

1 +nu21 

%1 := -1 +nu13 nu31 +nu12 nu21 
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APPENDIX C: COMPOSITE LAMINATE CODE LISTING IN FORTRAN 

UUUTHIS CODE DOES NOT ASSUME SYMETRIC CROSS SECTION UUUAU 

******THIS PROGRAM CALCULATE VELOCITY AS A FCT OF ANGLE """'"*"""" .... 
""""****"*""""""""""""""""""""****"*""""""""*****""*"**********"""*""'"""""""""""""""""""""""" 

program VELOCITY 

real t,a(3,3),theta,qb(3,3),ainv{3,3) 
real rho,nu12,e1 ,h,nu21,theta2,count2,c · 

double precision ain(40,40),aout(40,40),dd 

integer i,j,k,num,count 

character*40 title,junk 

rho=1620.0 

open(unit=40,file='speed.dat',status='unknown') 
""""""""""""""""""""""""""""""""""*"*****""""""**"""""""***""""""*********** 

do 999 count=0,90,5 
count2=real( count) 

open(unit=20,file='in' ,status=' old') ~,. 

read(20, '(a40)') title 
read(20,'(a40)') junk 
read{20, *) num 
read(20, '(a40)') junk 
read(20, *) t 
read{20,'(a40)') junk 

do 20 i=1,3 
do 20 j=1,3 

a{i,j)=O.O 
20 continue 

""""""""""""""""""""""""""""""""""""""""""""""""""""""***"""""""""" 
"""***kU/cU MAIN LOOP 1 UUUAUUAUUUUUUAUkUicUU 



do 100 i=1 ,num 

read(20,*) theta 

theta2=theta-count2 

call qmat(theta2,qb) 

do 50 j=1,3 
do 50 k=1,3 

a(j,k)=a(j,k)+qb(j,k) 
50 continue 

1 00 continue 
close(20) 
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UU:UUUU END OF MAIN LOOP ONE UUUUUUUUUAUUI< 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

do 150 i=1,3 
do 150j=1,3 

a(i,j)=a(i,j)*t 
ain(i,j)=dble( a(i,j)) 

150 continue 
> 

***** MATRIX INVERSION 1 ••••••••••••••••••••••••••••••••• 

175 

call GJINV(ain,aout~dd,3) 

do 175 i=1,3 
do 175 j=1,3 

ainv(i,j)=real(aout(i,j)) 
continue 

CALCULATION OF MATERIAL PROPERTIES 1**** 

h=t*real(num) 

nu12=(-1.0)*(ainv(1 ,2)/ainv(1, 1)) 
e1=(1.0)/(ainv(1, 1)*h) 



count2=real( count)+90. 0 

open(unit=20,file='in',status='old') 

read(20,'(a40)') title 
read(20,'(a40)') junk 
read(20, *) num 
read(20,'(a40)') junk 
read(20,*) t 
read(20,'(a40)') junk 

do 200 i=1,3 
do 200 j=1,3 

a(i,j)=O.O 
200 continue 
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AA f< AAAAA AAA A A AAA A A AAAA A AA.AAA A A A AA AA AAAA AA AAA A AAA A A A AAAA *A AAAAA * AAA A 

AUAAAAUiUA MAIN LOOP 2 AAAUAAAUUUUieAieAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

do 300 i=1 ,num 

read(20, *) theta 

theta2=theta-count2 

call qmat(theta2,qb) 

do 250 j=1,3 
do 250 k=1,3 

a(j,k)=a(j,k)+qb(j,k) 
250 continue 

300 continue 
close(20) 

AAAAAAAA*AAAA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

UUAUUUA END OF MAIN LOOP 2 UUAUUAUUUUUUAUUA 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 



do 350 i=1,3 
do 350 j=1,3 

a(i,j)=a(i,j)*t 
ain(i,j)=dble(a(i,j)) 

350 continue 
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MATRIX INVERSION 2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

call GJINV(ain,aout,dd,3) 

do 375 i=1,3 
do 375 j=1,3 

ainv(i ,j)=real( aout(i,j)) 
375 continue 

CALCULATION OF MATERIAL PROPERTIES 2 

nu21 =(-1.0)*(ainv(1 ,2)/ainv(1, 1)) 

c=sqrt(1.0E9*e1/rho/(1-nu12*nu21))/1000.0 · 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

AAAAAAA OUTPUT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

************************************************************** 

write(40, *) count,e1 ,nu12,nu21 ,c 

999 continue 

close(40) 
stop 
end 

AAAAAAAAAAAAAAA 
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subroutine qmat(theta,qb) 

real qb(3,3),qt(3,3), t(3,3), tinv(3,3), theta 
real q(3,3) 

...... integer i,j 

q(1 '1)=181.8 
q(1 ,2)=2.897 
q(1,3)=0.0 
q(2, 1)=2.897 
q(2,2)=1 0.34 
q(2,3)=0.0 
q(3, 1)=0.0 
q(3,2)=0.0 
q(3,3)=7.17 

theta=theta*1. 7 45329e-2 

t(1, 1 )=(cos(theta))**2 
t(2,2)=t(1 '1) 
t(1 ,2)=(sin(theta))**2 
t(2, 1)=t(1 ,2) 
t(1 ,3)=sin(theta)*cos(theta) 
t(2,3)=-1.0*t(1 ,3) 
t(3,1)=-2.0*t(1 ,3) 
t(3,2)=2.0*t(1 ,3) 
t(3,3)=t(1 '1)-t(1 ,2) 

do 10 i=1,3 
do 10 j=1 ,3 
, tinv(i,j)=t(j,i) 

10 continue 

call matmult(tinv,q,qt,3,3,3) 
call niatmult( qt, t,qb,3,3,3) 

return 
end 
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* THIS IS THE SUBROUTINE matmult. IT MULTIPLIES TWO * 
*CONFORMABLE MATICIES (UP TO 40X40) AND RETURNS THE PRODUCT. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
IT IS PART A) #3 OF PROBLEM 1A 

* 
REAL VARIABLES AND ARRAYS USED ARE: 

a(rowa,rowb)----THE A MATRIX 
b(rowb,colb)----THE B MATRIX 
c(rowa,colb)----A X B RESULT 

INTEGER VARIABLES ARE : 

* 

*· 

* 

* 
* 
* 

* 

i,j,k-----------COUNTER VARIABLES * 

* 

* 

* rowa------------THE NUMBER OF ROWS IN MATRIX A * 
* rowb------------THE NUMBER OF ROWS IN MATRIX B * 
* colb------------THE NUMBER OF COLUMNS IN MATRIX B * 
* * 
* * 
* PASSING ORDER IS "subroutine matmult(a,b,c,rowa,rowb,colb)"* 
* * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

subroutine matmult(a,b,c,rowa,rowb,colb) 

integer i,j,k,rowa,rowb,colb 
real a(rowa,rowb),b(rowb,colb),c(rowa,colb) 

** MULTIPLICATION ** 
do 30 i=1,rowa 

do 20 j=1 ,colb 
c(i,j)=O.O 
do 10 k=1 ,rowb 

c(i,j)=c(i,j)+a(i,k)*b(k,j) 
10 continue 
20 continue 
30 continue 

return 
end 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
40 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 

THIS IS THE SUBROUTINE GAUSSINV 

IT WAS TAKEN FROM "NUMERICAL METHODS" 
BY ROBERT W. HORNBECK 
MODIFICATIONS MADE 10-9-93 
BY DOUG VAN OTTERLOO 

DESCRIPTION 
THE FOLLOWING SUBROUTINE INVERTS THE·INPUT MATRIX USING 

THE GAUSS-JORDAN ELIMINATION METHOD. DIMENSION LIMITED TO 

BECAUSE Z MUST BE DIMENSIONED> (DIMEN+21) 

CALL GJINV(DPMAT,INVMAT,DPDET,DIMEN) 

WHERE: 
DPMAT----THE DOUBLE PRECISION MATRIX 
INVMAT-~-RETURNED AS THE INVERSE 
DIMEN----THE DIM x DIM DIMENSIONS OF MAT 

DPDET-----THE DETERMINANT OF THE MATRIX 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

SUBROUTINE GJINV(DPMAT,INVMAT,DPDET,DIMEN) 

INTEGER DIMEN,I,L,M,K,J(62) 

REALDTNRM 

DOUBLE PRECISION DPMAT(40,40),1NVMAT(40,40) 
DOUBLE PRECISION DD,PD,DPDET,CC,S 

CHARACTER*10 JUNK 

PD=1.0DO 
DO 124 L=1 ,DIMEN 

DD=O.ODO 
DO 123 K=1 ,DIMEN 

DD=DD+DPMA T(L, K)*DPMA T(L, K) 
123 CONTINUE 

DD=DSQRT(DD) 



PD=PD*DD 
125 J(L +20)=L 
124 CONTINUE 

DPDET=1.0DO 

DO 144 L=1,DIMEN 
CC=O.ODO 

M=L 
DO 135 K=L,DIMEN 
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IF ((DABS(CC)-DABS(DPMAT(L,K))).GE.O.ODO) GOTO 135 
126 M=K 

CC=DPMAT(L,K) 
135 CONTINUE 
127 IF (L.EQ.M) GOTO 138 
128 K=J(M+20) 

J(M+20)=J (L +20) 
J(L+20)=K 
DO 137 K=1 ,DIMEN 

S=DPMAT(K,L) 
DPMAT(K,L)=DPMAT(K,M) . 
DPMA T(K,M)=S 

137 CONTINUE 
138 DPMAT(L,L)=1.0DO 

DPDET=DPDET*CC 
DO 139 M=1,DIMEN 

DPMAT(L,M)=DPMA T(L,M)/CC 
139 CONTINUE 

DO 142 M=1,DIMEN 
IF(L.EQ.M) GOTO 142 

129 CC=DPMAT(M,L) 
IF(CC.EQ.O.ODO) GOTO 142 

. 130 DPMAT(M,L)=O.ODO 
DO 141 K=1,DIMEN 

DPMAT(M,K)=DPMAT(M,K)-CC*DPMAT(L,K) 
141 CONTINUE 
142 CONTINUE 
144 CONTINUE 

DO 143 L=1,DIMEN 
IF (J(L+20).EQ.L) GOTO 143 

131 M=L 
132 M=M+1 

IF(J(M+20).EQ.L) GOTO 133 
·136 IF(DIMEN.GT.M) GOTO 132 



133 J(M+20)=J(L+20) 
DO 163 K=1,DIMEN 

CC=DPMAT(L,K) 
DPMAT(L,K)=DPMAT(M,K) 
DPMAT(M,K)=CC 

163 CONTINUE 
J(L+20)=L 

143 CONTINUE 
DPDET=DABS(DPDET) 
DTNRM=REAL(DPDET/PD) 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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** TELL THE USER THE VALUE OF DTNRM ** 
** THE LARGER THE BETTER AUUUUUU 

**************************************** 

IF (DTNRM.L T.0.001) THEN 
WRITE(*,*) 
WRITE(*,*) 
WRITE(*,*) 

- WRITE(*,400) DTNRM 
400 FORMAT('THE ILL-CONDITIONING TEST GIVES A VALUE OF: ',F6.4) 

WRITE(*,*) 
WRITE(*,*) 'A VALUE BELOW 0.001 INDICATES A PROBLEM' 
WRITE(*,*) 
WRITE(*,*) 'HIT <ENTER> TO CONTINUE' 
READ(*,'(a1 0)') JUNK 
WRITE(*,*) 
WRITE(*,*) 
WRITE(*,*) 

END IF 

** COPY DPMAT TO INVMAT UUUAUUAUUUUUUUAUUUUUAUUAUA 

DO 500 1=1,DIMEN 
DO 500 K=1,DIMEN 

INVMAT(I,K)=DPMAT(I,K) 
500 CONTINUE 

RETURN 
END 



Multi-angle test run 
**#OF PLIES 
12 
** PLY THICKNESS (m) 
125.0e-6 
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SAMPLE INPUT FILE 

** PLY ORIENTATIONS (degrees) 
0.0 
90.0 
0.0 
90.0 
0.0 
90.0 
90.0 
0.0 
90.0 
0.0 
90.0 
0.0 

Angle E1 
0 95.809780 
5 88.314430 
10 72.078150 
15 56.23.77 40 
20 44~296190 

25 36.131610 
30 30.797 420 
35 27.489090 
40 25.687970 
45 25.116440 
50' 25.687970 
55 27.489090 
60 30.797420 
65 36.131610 
70 44.296190 
75 56.237750 
80 72.078160 
85 88.314430 
90 95.809770 

SAMPLE OUTPUT FILE 

n12 
5.204539E-02 
1.262056E-01 
2.868495E-01 
4.435767E•01 
5.617278E-01 
6.425092E-01 
6.952863E-01 
7.280196E-01 
7.458401 E-01 
7.514949E-01 
7 .458402E-01 
7.280196E-01 
6.952863E-01 
6.425093E-01 
5.617278E-01 
4.435767E-01 
2.868494E-01 

. 1.262056E-01 
5.204538E-02 

n21 
5.204538E-02 
1.262053E-01 
2.868489E-01 
4.435760E-01 
5.617272E-01 
6.425089E-01 
6.952860E-01 
7.280193E-01 
7.458397E-01 
7.514945E-01 
7.458397E-01 
7.280194E-01 
6.952863E-01 
6.425092E-01 
5.617277E-01 
4.435767E-01 
2.868497E-01 
1.262059E-01 
5.204539E-02 

velocity 
7.700810 
7.442945 
6.962894 
6.574061 
6.320493 
6.163107 
6.066414 
6.008686 
5.977939 
5.968281 
5.977939 
6.008685 
6.066416 
6.163109 
6.320494 
6.574063 
6.962895 
7.442946 
7.700809 
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APPENDIX D: VELOCITY PROFILE MEASUREMENT ACCURACY 

A series of tests was run to assess the accuracy and repeatability of the 

ultrasonic tests. The test consisted of measuring the leaky Lamb wave velocity 

profile of a single plate on three consecutive days. The procedure used was nearly 

identical to that used for the experimental data in the body of this text. The only 

difference was in the 3 day time period over which this test was conducted. The 

data acquisition presented in the text was dorie for all measurements in a ten hour 

time frame. 

Table 0.1 below lists the results. Only at 35 degrees was any significant 

variance found. All other angles were consistent to a standard deviation of less 

than one percent. The lone erratic point at 35 degrees is probably the result of 

human error which could also be a part of the experimental data in the text. From 

this data it was determined that the measurement accuracy and repeatability was 

good and that the results are a valid representation of the plates tested in this 

thesis. 

Rotation in Day#1 Day#2 Day#3 Average Std. Dev. % Std. 
Degrees mm/J.tsec mm/J.tsec mm/J.tsec mm/J.tsec mm/J.tsec Dev. 

0 7.5866 7.5416 7.5505 7.5596 0.0195 0.2576 
10 7.2571 7.1670 7.2324 7.2188 0.0380 0.5264 
20 6.4928 6.4271 6.5329 6.4843 0.0436 0.6725 
25 6.3883 6.2871 6.3458 6.3404 0.0415 0.6544 
35 5.8472 6.0361 6.0476 5.9770 0.0919 1.5378 
45 5.9681 5.9624 5.9457 5.9587 0.0095 0.1594 

Table 0.1 Accuracy of Ultrasonic Leaky Lamb Wave Velocity Measurements 
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