Superconductivity, magnetism, and charge density wave formation in ternary compounds with the Sc5Co4Si10-type structure

Thumbnail Image
Date
1987
Authors
Yang, Hung-Duen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Physics and Astronomy
Abstract

The variation of the superconducting transition temperature T(,c) with hydrostatic pressure up to 23.7 kbar is reported for eleven compounds with the Sc(,5)Co(,4)Si(,10)-type structure. Most of these compounds display a modest linear depression of T(,c) with pressure (dT(,c)/dp (TURN) 10('-5) K/bar), however, two materials, Lu(,5)Ir(,4)Si(,10) and Lu(,5)Rh(,4)Si(,10), undergo a discontinuous transformation above a critical pressure of about 20 kbar to a state with a significantly higher T(,c);The resistivity and magnetic susceptibility show an anomaly in Lu(,5)Ir(,4)Si(,10) and Lu(,5)Rh(,4)Si(,10) at T(,o) = 83 K and 155 K respectively. It is interpreted that this phase transformation may involve a charge density wave (CDW) formation that opens an energy gap over a portion of the Fermi surface. The P-T phase diagram for Lu(,5)Ir(,4)Si(,10), given to demonstrate the correlation between T(,o) and T(,c), provides the clear evidence that the pressure enhancement of T(,c) is due to a progressive removal of the charge density wave in the crystal;Combining the magnetic susceptibility and heat capacity data, we give a quantitative estimate of a 36% loss in the electronic density of states at the Fermi level due to this energy gap in Lu(,5)Ir(,4)Si(,10);The pseudoternary system (Lu(,1-x)Sc(,x))(,5)Ir(,4)Si(,10), 0 (LESSTHEQ) x (LESSTHEQ) 0.05, is used to study the doping (impurity) effect on the CDW and the competition between T(,o) and T(,c) in Lu(,5)Ir(,4)Si(,10). It is found that (dT(,o)/dx)(,x=0) = -18.5 K/at % and (dT(,c)/dx)(,x=0) = 0.5 K/at %, are comparable to another CDW system (Ta(,1-x)Nb(,x))S(,3);The electrical and magnetic properties for R(,5)Ir(,4)Si(,10) (R = Dy-Yb) are also reported. All of these compounds exhibit an anomaly in resistivity, which is considered to be due to the formation of a CDW, similar to the one observed in Lu(,5)Ir(,4)Si(,10). Two distinct magnetic transitions with different features, seen in the ac magnetic susceptibility and heat capacity at low temperature for Tm(,5)Ir(,4)Si(,10) indicate two different types of magnetic structure. Strong crystal field effects or valence fluctuations are suggested to occur in Yb(,5)Ir(,4)Si(,10);because of the noticeable deviation of the magnetic susceptibility from Curie-Weiss law below 70 K; *DOE Report IS-T-1281. This work was performed under contract No. W-7045-Eng-82 with the U.S. Department of Energy.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 1987