2012

Family -- I flaviridae

Yan Ping Chen

N. Nakashima
National Institute of Agrobiological Sciences

Peter D. Christian
National Institute for Biological Standardization and Control

T. Bakonyi
Szent Istvan University

Bryony C. Bonning
Iowa State University, bbonning@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs
Part of the Entomology Commons, Genetics Commons, Genomics Commons, and the Virology Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ent_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Family -- Iflaviridae

Abstract
This chapter focuses on Iflaviridae family whose sole member genus is Iflavirus. The virions are roughly spherical and exhibit icosahedral symmetry with a diameter of 26–30 nm and have no envelope and no distinctive surface structures. The virions contain one molecule of linear, positive sense, and single stranded RNA, and the genome has a size ranging from 8800 to 10,100 nt and contains a single large ORF encoding a polyprotein of 2858–3085 amino acids. All proteins arise by proteolytic cleavage of a single polyprotein and mature virions contain three major structural proteins (VP1, VP2, and VP3) generally between 28 and 44 kDa. A fourth smaller capsid protein (VP4) of around 4–12 kDa has been reported in some species and is located in the second position of the capsid precursor coding region. The genome is monopartite and contains a large ORF with genes encoding capsid proteins at the 5´ end and genes encoding the nonstructural proteins at the 3´ end of the genome. The nonstructural proteins include a RNA helicase, a 3C-like cysteine protease, and a RNA-dependent RNA polymerase. The viral RNA is infectious and serves as both genomic and viral mRNA. The replication of viruses occurs in the cytoplasm of infected cells but the mechanism of viral genomic RNA entry into the host cell cytoplasm is unknown. The genomic RNA is translated into a polyprotein, which is autocatalytically cleaved into structural and nonstructural component peptides. All member viruses have been isolated from arthropod species and appear to have restricted host ranges. Since only one genus is currently recognized, the family description corresponds to the genus description.

Keywords
viral mRNA, genomic RNA

Disciplines
Entomology | Genetics | Genomics | Virology

Comments

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Authors
Yan Ping Chen, N. Nakashima, Peter D. Christian, T. Bakonyi, Bryony C. Bonning, Steven M. Valles, and D. V. Lightner

This book chapter is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ent_pubs/269
FAMILY
IFLAVIRIDAE

Taxonomic structure of the family

Family
Iflaviridae

Genus
Iflavirus

Since only one genus is currently recognized, the family description corresponds to the genus description.

GENUS
IFLAVIRUS

Type species
Infectious flacherie virus

Virion properties

Morphology
Virions are roughly spherical and exhibit icosahedral symmetry with a diameter of 26–30 nm. Virions have no envelope and no distinctive surface structures (Figure 1).

Physicochemical and physical properties
Virions have a buoyant density of between 1.33 and 1.38 g cm⁻³.

Nucleic acid
Virions contain one molecule of linear, positive sense, single stranded RNA. The genome has a size ranging from 8800–10,100 nt and contains a single large ORF encoding a polyprotein of 2858–3085 amino acids. A small genome-linked virus protein, VPg is linked covalently to the 5' end of the genomic RNA. The untranslated regions (UTRs) flanking both ends of the ORF vary in size by species. The 5'-UTR of infectious flacherie virus (IFV) and sacbrood virus (SBV) (130–180 nt) is significantly shorter than that of the other iflaviruses (400–1200 nt).

Proteins
All proteins arise by proteolytic cleavage of a single polyprotein. Mature virions contain three major structural proteins (VP1, VP2 and VP3) generally between 28 and 44 kDa. A fourth smaller capsid protein (VP4) of around 4–12 kDa has been reported in some species and is located in the second

Figure 1: (Left) The outer surface view of the virion of infectious flacherie virus (IFV) along a five-fold axis reconstructed by cryo-electron microscopy. The bar represents 10 nm (courtesy of J. Hong). (Right) Negative contrast electron micrograph of isometric particles of an isolate of IFV. The bar represents 100 nm (courtesy of H. Bando).
The genome is monopartite and contains a large ORF with genes encoding the capsid proteins at the 5' end and genes encoding the non-structural proteins at the 3' end of the genome. The capsid proteins, arranged in the order VP2-VP4-VP3-VP1, are preceded by a short leader protein (L). The approximate positions of the helicase (Hel), protease (Pro) and RNA-dependent RNA polymerase (RdRp) domains in the non-structural protein are shown.

The viral RNA is infectious and serves as both genomic and viral mRNA. The replication of viruses occurs in the cytoplasm of infected cells but the mechanism of viral genomic RNA entry into the host cell cytoplasm is unknown. The genomic RNA is translated into a polyprotein which is autocatalytically cleaved into structural and non-structural component peptides. For three members in the family (Ectropis obliqua virus (EoV), Perina nuda virus (PnV) and Varroa destructor virus-1 (VDV-1)), there is evidence to suggest that translation of the polyprotein is mediated by an IRES. Mechanisms of polyprotein processing and the effects on host cell macromolecular synthesis during infection have not been well studied for the members of this family.

Antigenic properties

Honeybee viruses in the genus are serologically distinct. There are no known serological relationships between other members of the genus.

Biological properties

All member viruses have been isolated from arthropod species and appear to have restricted host ranges. IFV is known from the lepidopteran species *Bombyx mori* and * Glyphodes pyloalis*. PnV is known only from the lepidopteran *Perina nuda*. EoV infects the lepidopteran *Ectropis obliqua*. Deformed wing virus (DWV) and SBV are common viruses of the honey bee, *Apis mellifera*. VDV-1 was isolated from the honey bee parasitic mite, *Varroa destructor*. SBV and DWV are distributed globally likely from intensive international trade and transportation of bees and bee products. With the exception of PnV, which replicates in a cell line established from *Perina nuda*, there are no cell culture systems available for the propagation of other viruses in the group.
Species demarcation criteria in the genus

The species demarcation criteria are:

- Natural host range: species can be differentiated on the basis of their natural host range.
- Sequence identity at the amino acid level between the CPs of isolates and strains of a species is above 90%.

List of species in the genus *Iflavirus*

<table>
<thead>
<tr>
<th>Virus Name</th>
<th>Accession Number</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformed wing virus</td>
<td>[AJ489744]</td>
<td>(DWV)</td>
</tr>
<tr>
<td>Kakugo virus</td>
<td>[AB070959]</td>
<td>(DWV-IT)</td>
</tr>
<tr>
<td>Ectropis obliqua virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ectropis obliqua picorna-like virus)</td>
<td>[AY365064]</td>
<td>(EoV)</td>
</tr>
<tr>
<td>Insecticidal flacherie virus</td>
<td>[AB000906]</td>
<td>(IFV)</td>
</tr>
<tr>
<td>Perina nuda virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Perina nuda picorna-like virus)</td>
<td>[AF323747]</td>
<td>(PnV)</td>
</tr>
<tr>
<td>Sacbrood virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacbrood virus-Rothamsted</td>
<td>[AF092924]</td>
<td>(SBV-Roth)</td>
</tr>
<tr>
<td>Varroa destructor virus-1</td>
<td>[AY251269]</td>
<td>(VDV-1-NL)</td>
</tr>
</tbody>
</table>

Species names are in italic script; names of isolates are in roman script; names of synonyms are in roman script and parentheses. Sequence accession numbers [] and assigned abbreviations () are also listed.

List of other related viruses which may be members of the genus *Iflavirus* but have not been approved as species

<table>
<thead>
<tr>
<th>Virus Name</th>
<th>Accession Number</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bee slow paralysis virus</td>
<td>[EU035616]</td>
<td>(BsPV)</td>
</tr>
<tr>
<td>Brevicoryne brassicae virus 1</td>
<td>[EF517277]</td>
<td>(BrBV-1)</td>
</tr>
</tbody>
</table>

Phylogenetic relationships within the family

Phylogenetic analysis of the complete genomes and deduced amino acid sequence of capsid protein precursors indicate close genetic relationships between DWV and VDV-1 (nucleotide identities 79–89% and amino acid identities 89–98% in different regions of the genomes), reflecting a short evolutionary distance after the separation from a common ancestor. EoV and PnV also show a close genetic relatedness to each other. By contrast, the much larger genetic distances dividing these two pairs of species from each other, and from SBV and IFV, are more typical of the distances between different genera that are seen in some members of the order *Picornavirales*, e.g. the *Picornaviridae* and *Secoviridae* (Figure 3).

Similarity with other taxa

The viruses in this family have a structure and genome arrangement similar to the viruses in the *Dicistroviridae, Picornaviridae, Marnaviridae* and *Secoviridae*. The RNA genome contains a single large ORF encoding the capsid proteins at the 5’ end and the non-structural proteins at the 3’ end. The 5’ end of the genome is covalently linked to a small peptide, VPg, which plays an important role in RNA replication. The replicases of iflaviruses resemble those of the dicistroviruses, picornaviruses, marnaviruses and secoviruses by containing sequence motifs typical of RNA helicase (Hel), a chymotrypsin-like 3C protease (Pro), and an RNA-dependent RNA polymerase (RdRp) in the 5’ to 3’ orientation. The RdRp domains are phylogenetically related (Figure 3). The virions are icosahedral with pseudo-T = 3 symmetry and a diameter about 30 nm.

Derivation of name

Ifla: from the type species of the genus, *Infectious flacherie virus*.
Further reading

Contributed by