The Effectiveness of Locomotion Interfaces Depends on Self-Motion Cues, Environmental Cues, and the Individual

Jonathan W. Kelly
Iowa State University, jonkelly@iastate.edu

Stephen B. Gilbert
Iowa State University, gilbert@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/imse_pubs

Part of the Cognitive Psychology Commons, and the Ergonomics Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/imse_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Industrial and Manufacturing Systems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Industrial and Manufacturing Systems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The Effectiveness of Locomotion Interfaces Depends on Self-Motion Cues, Environmental Cues, and the Individual

Abstract
The proliferation of locomotion interfaces for virtual reality necessitates a framework for predicting and evaluating navigational success. Spatial updating—the process of mentally updating one's self-location during locomotion—is a core component of navigation, is easy to measure, and is sensitive to common elements of locomotion interfaces. This paper highlights three factors that influence spatial updating: body-based self-motion cues, environmental cues, and characteristics of the individual. The concordance framework, which characterizes locomotion interfaces based on agreement between body movement and movement through the environment, serves as a useful starting point for understanding the effectiveness of locomotion interfaces for enabling accurate navigation.

Keywords
Human-centered computing, Human computer interaction (HCI), Interaction paradigms, Virtual reality

Disciplines
Cognitive Psychology | Ergonomics

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
The Effectiveness of Locomotion Interfaces Depends on Self-Motion Cues, Environmental Cues, and the Individual

Jonathan W. Kelly* Stephen B. Gilbert†

Iowa State University

Abstract

The proliferation of locomotion interfaces for virtual reality necessitates a framework for predicting and evaluating navigational success. Spatial updating—the process of mentally updating one’s self-location during locomotion—is a core component of navigation, is easy to measure, and is sensitive to common elements of locomotion interfaces. This paper highlights three factors that influence spatial updating: body-based self-motion cues, environmental cues, and characteristics of the individual. The concordance framework, which characterizes locomotion interfaces based on agreement between body movement and movement through the environment, serves as a useful starting point for understanding the effectiveness of locomotion interfaces for enabling accurate navigation.

Index Terms: Human-centered computing—Human computer interaction (HCI)—Interaction paradigms—Virtual reality

1 Introduction

Navigation is rarely the primary task in a virtual environment (VE). However, successful navigation supports primary tasks. For example, a prospective real estate buyer, whether touring a home virtually or in person, must be able to appreciate the spatial layout of the home in order to determine if it will fit their needs. Disorientation during the home tour will negatively affect the accuracy of the buyer’s cognitive map of the home. We propose that navigational success in virtual reality (VR) depends on the self-motion cues afforded by the locomotion interface, environmental cues available in the VE, and characteristics of the individual navigator.

The research described herein focuses on spatial updating, which is a core cognitive component of navigation. Spatial updating is the process of keeping track of self-position and self-orientation during locomotion. Spatial updating failure is synonymous with disorientation. More advanced spatial cognitive processes, such as formation of a cognitive map, depend heavily on spatial updating. For example, developing a cognitive map of a house requires integration of separate spaces connected through spatial updating. At the extreme, if the user is disoriented, then the accuracy of the cognitive map will suffer severely. But even less extreme disruption of spatial updating will negatively impact cognitive map accuracy.

2 Related work

This section highlights several factors that determine whether a locomotion interface will enable accurate spatial updating.

2.1 Self-motion cues and the concordance framework

There is broad evidence supporting the importance of walking in VR. For example, physically walking through a VE enhances presence [11] and reduces disorientation [6, 10] compared to other methods of locomotion that do not involve walking.

Walking generates a host of self-motion cues that facilitate spatial updating. These cues can be categorized as internal self-motion cues and external self-motion cues. Internal self-motion cues, herein referred to as body-based cues, are cues internal to the navigator, including vestibular stimulation caused by linear and angular accelerations, proprioceptive cues from movement of limbs and joints, and efferent copies of signals generated by motor cortex. External self-motion cues are provided by optic flow and acoustic flow, defined as changes to the visual or acoustic array as a result of self-motion. Vection, or illusory self-motion, can occur When external self-motion cues are presented in the absence of internal self-motion cues.

Navigation research indicates that body-based cues play an outsized role in spatial updating. In one study [6], participants completed a triangle completion task in which they traveled to two waypoints before attempting to return to the path origin. Visual self-motion alone led to poor performance. Inclusion of body rotation at the waypoints led to performance equivalent to full walking. In another study [10], participants performing a virtual foraging task became disoriented without translational and rotational body-based cues. Although these studies disagree on the sufficiency of rotational cues, they agree on the importance of body movement for spatial updating.

Although real walking is possible in most modern VR systems, physical space limitations necessitate the use of a locomotion interface to explore all but the smallest VEs. Locomotion interfaces necessarily modify or eliminate self-motion cues in order to allow exploration of VEs beyond the tracked physical space. Given the importance of body-based self-motion cues to spatial updating, the concordance framework [2] (Figure 1) was developed to describe locomotion interfaces based on the extent to which body movement is concordant with movement through the VE.

![Figure 1: Examples illustrating the concordance framework for locomotion interfaces [2]. Walking (left) is concordant because body movement is consistent with movement through the VE. Teleporting to translate but using the body to rotate is partially concordant (middle). Teleporting to translate and rotate (right) is discordant, because the body is static during translations and rotations through the VE.](image)

Concordant interfaces are those in which body movement is consistent with movement through the VE. Walking is the quintessential concordant interface. Partially concordant interfaces are those in which movement of the body is partially consistent with movement through the VE. An excellent example is the teleporting interface in which translation is achieved by teleporting but rotation is achieved by body rotation. Discordant interfaces are those in which body movement is uncoupled from movement through the VE. Joystick locomotion is a good example of a discordant interface because the user’s body is stationary during locomotion through the VE.

*e-mail: jonkelly@iastate.edu
†e-mail: gilbert@iastate.edu
Research on variations of the teleporting interface supports the
concepts defined by the concordance framework. Using the tri-
gle completion task to measure spatial updating, performance
is best when walking (concordant interface), worst when telep-oring to translate and rotate (discordant interface), and in between
when teleporting to translate and using the body to rotate (partially
concordant) [2,4]. Furthermore, cognitive maps are more accurate
after exploring through partially concordant teleporting compared to
discordant teleporting [7].

The concordance framework is a starting point for understanding
how locomotion interfaces affect navigation. A more complete un-
derstanding requires further research on how specific locomotion
interfaces affect core navigation tasks such as spatial updating. For
example, the finding that arm-swinging [8] increases spatial updat-
ing accuracy suggests that the concordance framework should be expanded
to include arm movements. Careful research is needed
to determine whether other interfaces that involve body movement,
such as stepping in place [12] or even finger walking [5], convey
benefits for spatial updating. Redirected walking [9] involves full
body movement, but whether this leads to accurate spatial updating
should determine its place in the concordance framework.

2.2 Environmental cues

Environmental cues can mitigate navigational deficiencies associ-
ated with partially concordant and discordant locomotion interfaces
through a process known as piloting: navigation based on visible
landmarks. For example, a recognizable university building provides
an instantaneous position and orientation fix, which can correct for
spatial updating errors that would otherwise accumulate over time.

In one study [2], triangle completion performance within a re-
alisitic classroom VE was superior to that within an open field VE,
but the benefits of the classroom piloting cues were moderated by
the locomotion interface, with the greatest benefit associated with
a discordant teleporting interface, a smaller benefit associated with
a partially concordant teleporting interface, and no benefit associ-
ated with walking. Surprisingly, benefits were only associated with
spatial boundaries, such as walls or a fence, and not with landmarks
scattered within the VE. Further research is needed to identify the
specific types of environmental cues that are useful for mitigating
disorientation caused by interface discordance.

2.3 Individual differences

The effectiveness of a locomotion interface also depends on char-
acteristics of the individual. A recent study [1] explored individual
differences using a triangle completion task with three interfaces:
walking, partially concordant teleporting, and discordant teleporting.
The task was conducted in an empty field VE and a classroom VE.
Three groups of participants emerged. All groups performed well
when walking. One group performed especially poorly when tele-
porting, and barely benefited from the classroom piloting cues. A
second group also performed poorly when teleporting in the field,
but improved considerably in the classroom. A third group did quite
well overall and improved in the classroom compared to the field.
Groups differed along several dimensions, including gender and
video game experience, but only perspective-taking ability distin-
guished all the three groups. These results highlight the importance
of predicting the effectiveness of locomotion interfaces for individ-
ual users. A future goal is to make interface recommendations to
users based on their individual abilities and experiences.

3 Conclusions

Navigational success in VR depends on the self-motion cues afforded
by the interface, environmental cues in the VE, characteristics of
the individual navigator, and interactions between those variables.
Research should expand by exploring interfaces that include body
movements such as stepping, leaning, and arm movements, going be-
ond basic walking and body rotation. The concordance framework
could provide a useful taxonomy to distinguish interfaces presented
within the Locomotion Vault [3]. Furthermore, research on the in-
teraction between locomotion interfaces and piloting cues should
identify the critical features of useful environmental cues. For ex-
ample, if boundaries are essential, what defines a boundary? Finally,
longitudinal research should explore how user experience impacts
navigation. Does interface training and experience lead to superior
spatial updating? If so, do such benefits transfer to novel interfaces?

Acknowledgments

Thanks to all those involved in this research for their help develop-
ing the ideas. This material is based upon work supported by the
National Science Foundation under Grant No. CHS-1816029.

References

Individual differences in teleporting through virtual environments.

tamante, A. G. Ostrander, and S. B. Gilbert. Spatial cognitive im-
plications of teleporting through virtual environments. Journal of
xap0000263

vault: the extra mile in analyzing vr locomotion techniques. In Pro-
cedings of the 2021 CHI Conference on Human Factors in Computing

Gilbert. Teleporting through virtual environments: Effects of path
scale and environment scale on spatial updating. IEEE Transactions
10.1109/TVCG.2020.2973051

place (fwip): A traveling technique in virtual environments. In A. Butz,
B. Fisher, A. Krüger, P. Olivier, and M. Christie, eds., Smart Graphics,
10.1007/978-3-540-85412-8_6

Golledge. Spatial updating of self-position and orientation during real,
imagined, and virtual locomotion. Psychological Science, 9:293–298,
1998. doi: 10.1111/1467-9280.00058

Gilbert. Rotational self-motion cues improve spatial learning when
teleporting in virtual environments. In Proceedings of the Symposium
on Spatial User Interaction, 2020. doi: 10.1145/3385959.3418443

[8] M. McCullough, H. Xu, J. Michelson, M. Jackoski, W. Pease, W. Cobb,
W. Kalescgy, J. Ladd, and B. Williams. Myo arm: Swinging to ex-
plore a ve. In Proceedings of the ACM SIGGRAPH Symposium on
Applied Perception, SAP ’15, p. 107–113. Association for Compu-
2804416

F. Steinicke, and E. S. Rosenberg. 15 years of research on redirected
walking in immersive virtual environments. IEEE Computer Graph-
111125628

[10] R. A. Ruddle and S. Lessels. For efficient navigational search, humans
require full physical movement, but not a rich visual scene. Psycholo-
01728.x

ing technique on presence in virtual reality. ACM Trans. Comput.-Hum.

motion: Walking in place through virtual environments. Presence:
1162/105474699566512