Multi-parameter analysis in eddy current inspection of aircraft engine components

Thumbnail Image
Date
1993
Authors
Fahr, A.
Chapman, C.
Pelletier, A.
Hay, D.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

One of the major problems limiting the life of critical aircraft engine components, such as compressor discs and spacers, is the formation of low cycle fatigue (LCF) cracks in the fastener bolt holes. Such cracks are often initiated from corners and their surfaces are oxidized during the engine operation. Eddy current techniques using rotating probes are considered to be the most appropriate for detecting bolt hole cracks. Inspection according to damage tolerance criteria requires repeatable detection (90% probability of detection with 95% confidence) of cracks of the order of 0.125 mm (0.005″). If only threshold setting methods are used by a human analyst or implemented by means of electronic instrumentation, detectability can be low since it is difficult to distinguish between the actual flaw signal and noise in the eddy current signal as both are of similar amplitude. However, in certain cases, searching for structure in the noisy waveform can provide indications of defects that escape detection by threshold setting techniques. One way of achieving this is by using multi-parameter signal analysis and pattern recognition methods.

Comments
Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 1993