Observation of Direct-Photon Collective Flow in Au plus Au Collisions at root s(\text{NN})=200 GeV

Andrew Adare
University of Colorado, Boulder

John C. Hill
Iowa State University, jhill@iastate.edu

Todd Kempel
Iowa State University, todd.kempel@gmail.com

John G. Lajoie
Iowa State University, lajoie@iastate.edu

Alexandre Lebedev
Iowa State University, lebedev@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs

Part of the [Elementary Particles and Fields and String Theory Commons](http://lib.dr.iastate.edu/physastro_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/260. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Observation of Direct-Photon Collective Flow in Au plus Au Collisions at root $s(\text{NN})=200 \text{ GeV}$

Abstract
The second Fourier component $v(2)$ of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum ($p(T)$) of 1-12 GeV/c in Au + Au collisions at root $s(\text{NN}) = 200 \text{ GeV}$. Previous measurements of this quantity for hadrons with $p(T) < 6 \text{ GeV/c}$ indicate that the medium behaves like a nearly perfect fluid, while for $p(T) > 6 \text{ GeV/c}$ a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for $p(T) > 4 \text{ GeV/c}$ the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the $p(T) < 4 \text{ GeV/c}$ region dominated by thermal photons, we find a substantial direct-photon $v(2)$ comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed $v(2)$.

Disciplines
Elementary Particles and Fields and String Theory | Physics

Comments

Authors
Andrew Adare, John C. Hill, Todd Kempel, John G. Lajoie, Alexandre Lebedev, Craig Ogilvie, H. Pei, Marzia Rosati, Alexey Yu. Semenov, Carla Vale, Feng Wei, et al., and PHENIX Collaboration

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/physastro_pubs/260
Observation of Direct-Photon Collective Flow in Au + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

0031-9007/12/109(12)/123202(7) 123202-1 © 2012 American Physical Society
PHENIX Collaboration

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Banaras Hindu University, Varanasi 221005, India
3 Bhabha Atomic Research Centre, Bombay 400 085, India
4 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
5 Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6 University of California-Riverside, Riverside, California 92521, USA
7 Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic
8 Chonbuk National University, Jeonju, 561-756, Korea
9 Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China
10 Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
11 University of Colorado, Boulder, Colorado 80309, USA
12 Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
13 Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
14 Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
15 Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
16 ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary
17 Ewha Womans University, Seoul 120-750, Korea
18 Florida Institute of Technology, Melbourne, Florida 32901, USA
19 Florida State University, Tallahassee, Florida 32306, USA
20 Georgia State University, Atlanta, Georgia 30303, USA
21 Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
22 IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
23 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
24 Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
25 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
26 Iowa State University, Ames, Iowa 50011, USA
27 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
28 Helsinki Institute of Physics and University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
29 KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
30 Korea University, Seoul, 136-701, Korea
31 Russian Research Center “Kurchatov Institute,” Moscow, 123098 Russia
32 Kyoto University, Kyoto 606-8502, Japan
33 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
34 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
36 LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
37 Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
38 University of Maryland, College Park, Maryland 20742, USA
39 Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
40 Institut fur Kernphysik, University of Muenster, D-48149 Muenster, Germany
41 Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
42 Myongji University, Yongin, Kyonggido 449-728, Korea
43 Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
44 University of New Mexico, Albuquerque, New Mexico 87131, USA
45 New Mexico State University, Las Cruces, New Mexico 88003, USA
46 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
47 IPN-Orsay, Université Paris Sud, CNRS-IN2P3, Bp1, F-91406, Orsay, France
48 Peking University, Beijing 100871, People’s Republic of China
49 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
50 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
51 Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
52 Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia
53 Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil
54 Seoul National University, Seoul, Korea
55 Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
56 Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
Direct photons are produced in various processes during the entire space-time history of relativistic heavy ion collisions and, due to their small coupling, can leave the collision region without appreciable further interaction. This makes them a sensitive and direct probe of all stages of the collision, including initial hard scattering, formation, and evolution of the strongly interacting partonic medium, its transition to hadronic matter, and final decoupling [1,2]. The transverse momentum (p_T) ranges populated by various production mechanisms overlap. However, azimuthal asymmetries tied to the event-by-event collision geometry provide useful additional information and a means to distinguish between sources of direct photons. In this Letter we consider the second Fourier component (v_2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p_T) of 1–12 GeV/c in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Previous measurements of this quantity for hadrons with $p_T < 6$ GeV/c indicate that the medium behaves like a nearly perfect fluid, while for $p_T > 6$ GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for $p_T > 4$ GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the $p_T < 4$ GeV/c region dominated by thermal photons, we find a substantial direct-photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v_2.

DOI: 10.1103/PhysRevLett.109.122302 PACS numbers: 25.75.Dw

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p_T) of 1–12 GeV/c in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Previous measurements of this quantity for hadrons with $p_T < 6$ GeV/c indicate that the medium behaves like a nearly perfect fluid, while for $p_T > 6$ GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for $p_T > 4$ GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the $p_T < 4$ GeV/c region dominated by thermal photons, we find a substantial direct-photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underestimate the observed v_2.
$\sqrt{s_{NN}} = 200$ GeV Au + Au collisions. Also, at low p_T the fraction R_γ of direct over inclusive photons is now measured with much higher precision [5] than before [8]. Therefore, for the first time a meaningful extraction of the direct-photon v_2 itself is possible.

The data are from the 2007 run of the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The analyzed sample includes $\sim 3.0 \times 10^8$ minimum-bias Au + Au collisions. Events are triggered by the beam-beam counters (BBC), as described in [11], which comprise two arrays of Čerenkov counters covering $3.1 < |\eta| < 3.9$ and 2π in azimuth in both beam directions. Event centrality is determined by the charge sum in the BBC.

The event-by-event reaction plane (RP) is determined by two types of detectors, the first being the BBC itself. The RP is determined by the charge sum in the BBC. The event-by-event reaction plane (RP) is determined by $\cos[2(\Psi_{\text{true}} - \Psi_{\text{RP}})]$ and it is established by comparing event-by-event the RPs obtained separately in the two BBCs. The resolution is best in the 20%-30% centrality bin, where it reaches a value of 0.4. For the 2007 data taking period, a dedicated reaction-plane detector (RXN) [12] covers $1.0 < |\eta| < 2.8$ and the full azimuth. The RXN is a highly segmented lead-scintillator sampling detector providing much better measurement ($\sigma_{\text{RP}} \sim 0.7$) than the BBC, but it is closer to the central $|\eta| < 0.35$ pseudorapidity region where v_2 is measured, making it more sensitive to jet bias in those (rare) events, where a high-p_T particle is observed. The $0.7/0.4 = 1.75$ improvement on the reaction-plane resolution is a 1.75-fold improvement on point-by-point uncertainty.

Inclusive photons are measured in the PHENIX electromagnetic calorimeter [13]. Particles are identified (PID) and hadrons are rejected by a shower-shape cut and a veto on charged particles using the pad chambers [14]. Photons in each p_T range are binned according to $\Phi - \Psi_{\text{RP}}$, where Ψ_{RP} is the azimuth of the event-by-event reaction plane, which is established independently by the BBC and RXN. These distributions are then fit for each p_T range with $N_0[1 + 2v_2 \cos\{2(\Phi - \Psi_{\text{RP}})]\}$ to extract the raw $v_2^{\gamma,\text{meas}}$ coefficient for inclusive photons. As a cross-check of the fit value, another $v_2^{\gamma,\text{meas}}$ is also calculated from the average cosine of the particles with respect to the reaction plane.

Two sources of background to direct photons are of concern—hadronic decay photons and charged hadrons surviving the photon ID cuts. The cuts eliminate virtually all hadrons above 6 GeV deposited energy, which may arise from hadrons of any p_T above 6 GeV/c. However, some lower p_T hadrons survive the cuts. We correct for the v_2 of this contamination, and cross check the result using conversion photons detected as dielectrons, which are free of hadron contamination [15].

To correct for hadron contamination, pions, kaons, and protons are simulated using GEANT [16], including the calorimeter response. The fraction of charged hadrons in the sample surviving the photon ID cuts is determined as $N_{\text{hadr}}/N_{\text{meas}}$. The total hadron contamination is typically 20% at 2 GeV energy deposited in the calorimeter, 10% at 4 GeV, and negligible above 6 GeV. The weighted sum of these contributions is combined into a single v_2^{hadr} using the range of hadron p_T corresponding to each bin of deposited energy. A maximum v_2 of 0.18 is reached at 2 GeV. The corrected value of inclusive photons is then obtained using

$$v_2^{\gamma,\text{obs}} = \frac{v_2^{\gamma,\text{meas}} - (N_{\text{hadr}}/N_{\text{meas}})v_2^{\text{hadr}}}{1 - N_{\text{hadr}}/N_{\text{meas}}}.$$ \hspace{1cm} \hspace{1cm} (1)

Since v_2^{hadr} is very similar to $v_2^{\gamma,\text{meas}}$, the largest difference $v_2^{\gamma,\text{meas}} - v_2^{\gamma,\text{obs}}$ introduced by Eq. (1) is $0.15 - (0.15 - [0.2 \times 0.18])/0.8 = 0.0075$, or 5% of $v_2^{\gamma,\text{meas}}$. The uncertainty of this correction (see Table 1) is estimated by replacing the individual charged-hadron spectra with only charged pions, and then repeating the procedure. Finally, the true v_2 for inclusive photons is obtained from $v_2^{\gamma,\text{inc}} = v_2^{\gamma,\text{obs}}/\sigma_{\text{RP}}$. A large fraction of inclusive photons comes from hadron decays, predominantly from π^0 ($\sim 80\%$) and η ($\sim 15\%$), with a small fraction coming from ρ, ω, and η' decays, but only the π^0 v_2 is directly measured. The measurement of neutral pions and their v_2 is described in detail in [4,17]. We assume that η, ω, etc., follow the same KET.

Table 1. Typical systematic uncertainties ($\delta x/x$) contributing to the direct-photon $v_2^{\gamma,\text{dir}}$ measurement for minimum-bias collisions over two p_T ranges, and absolute uncertainty of $v_2^{\gamma,\text{dir}}$. Note that the uncertainty of $v_2^{\gamma,\text{dir}}$ is not the simple linear or quadratic sum of the uncertainties listed, but is derived by differentiation from the above expression on $v_2^{\gamma,\text{dir}}$. The last row shows this absolute uncertainty.

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Source</th>
<th>p_T range</th>
<th>(GeV/c)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1–3</td>
<td>10–12</td>
<td></td>
</tr>
<tr>
<td>$v_2^{\gamma,\text{inc}}$</td>
<td>Remaining hadrons</td>
<td>0.022</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>$v_2^{\gamma,\text{obs}}$</td>
<td>v_2 extraction method</td>
<td>0.004</td>
<td>0.006</td>
<td>B</td>
</tr>
<tr>
<td>$v_2^{\pi^0}$</td>
<td>Particle ID</td>
<td>0.037</td>
<td>0.06</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Normalization</td>
<td>0.004</td>
<td>0.072</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Shower merging</td>
<td></td>
<td>0.04</td>
<td>B</td>
</tr>
<tr>
<td>Subtraction</td>
<td>R_γ</td>
<td>0.031</td>
<td>0.22</td>
<td>A</td>
</tr>
<tr>
<td>Common</td>
<td>Reaction plane</td>
<td>0.063</td>
<td>0.063</td>
<td>C</td>
</tr>
<tr>
<td>Absolute uncertainty of $v_2^{\gamma,\text{dir}}$</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
scaling observed in hadrons [18], where $KE_T = m_T - m$. Thus, $v_2^{\text{had}}(p_T)$ can be calculated for all hadrons separately from $v_2(p_T)$ and then combined. As in [5], we assume m_T scaling of hadron p_T spectra and establish a “hadron cocktail” using the measured yield ratios. This cocktail is the input of a Monte Carlo simulation to calculate the combined $v_2^{\gamma \text{bg}}$ due to photons from hadron decays. The direct-photon v_2^{dir} is then obtained using the $R_\gamma(p_T)$ “direct-photon-excess ratio” as

$$v_2^{\gamma \text{dir}} = \frac{R_\gamma(p_T)v_2^{\gamma \text{inc}} - v_2^{\gamma \text{bg}}}{R_\gamma(p_T) - 1} = v_2^{\gamma \text{inc}} + \frac{v_2^{\gamma \text{inc}} - v_2^{\gamma \text{bg}}}{R_\gamma(p_T) - 1},$$

where $R_\gamma(p_T) = N^{\text{inc}}(p_T)/N^{\text{bg}}(p_T)$ with $N^{\text{inc}} = N^{\text{meas}} - N^{\text{hadr}}$, the number of inclusive photons, while $N^{\text{bg}}(p_T)$ is the number of photons attributed to hadron decay. Values of $R_\gamma(p_T)$ above 5 GeV/c are taken from the real-photon measurement with the PHENIX electromagnetic calorimeter [8], and below that from the more accurate, but p_T-range-limited internal-conversion measurement of direct photons [5]. Note that $(R_\gamma - 1)$ is measured with a relative uncertainty of 20% at low p_T. Even though the excess is small in this range ($\approx 20\%$), the $v_2^{\gamma \text{inc}} - v_2^{\gamma \text{bg}}$ in Eq. (2) is of the order of 0.01 [see Fig. 1(b)], yielding only a small overall correction term.

Contributors to systematic uncertainties for representative p_T values are listed in Table I. The total uncertainty is then derived by differentiating the formula on $v_2^{\gamma \text{dir}}$ and using the $\delta x/y$ values listed in Table I. Type A are point-by-point uncertainties, which are uncorrelated with p_T; type B are uncertainties, which are correlated with p_T; and type C is the overall normalization uncertainty, moving all points by the same fraction up or down. Since the $v_2^{\gamma \text{inc}}$ measurement is relative (the azimuthal anisotropy is fit without the need to know the absolute normalization), the π^0 and inclusive-photon-v_2 measurements are largely immune to energy-scale uncertainties, which are typically the dominant source of uncertainty in an absolute (invariant-yield) measurement. The uncertainties on v_2 are dominated by the common uncertainty on determining σ_{RP} and by uncertainties in particle identification. Uncertainties from absolute yields enter indirectly via the hadron cocktail (normalization) and more directly at higher p_T (where the real-photon measurement is used) by the $R_\gamma(p_T)$ needed to establish the direct-photon v_2. Note that due to the way $v_2^{\gamma \text{dir}}$ is calculated, once R_γ is large, its relative uncertainty contributes to the uncertainty on $v_2^{\gamma \text{dir}}$ less and less.

Figure 1 shows steps of the analysis using the minimum-bias sample, as well as the differences between results obtained with BBC and RXN. First, v_2 of π^0 and inclusive photons ($v_2^{\pi^0}$, $v_2^{\gamma \text{inc}}$) are measured, as described above [panels (a) and (b)]. Then, using the $v_2^{\gamma \text{bg}}$ of photons from hadronic decays and the R_γ direct-photon excess ratio, we derive the $v_2^{\gamma \text{dir}}$ of direct photons [panel (c)]. Panel (d) shows the $R_\gamma(p_T)$ values from the direct-photon invariant-yield measurements using internal conversion [5] and real [8] photons, with their respective uncertainties. Panel (e) shows the ratio of $v_2^{\gamma \text{dir}}/v_2^{\pi^0}$. We observe substantial direct-photon flow in the low-p_T region (c), commensurate with the hadron flow itself (e). However, in contrast to hadrons, the direct-photon v_2 rapidly decreases with p_T, and for $p_T \approx 5$ GeV/c, it is consistent with zero (c). The rapid transition from large direct-photon flow at 3 GeV/c to zero flow at 5 GeV/c is also demonstrated on panel (e), since the π^0 v_2 changes little in this region [4].

The surprising result that at low-p_T $v_2^{\gamma \text{dir}}$ is quite large with relatively small uncertainty hinges upon two facts. On the one hand, $v_2^{\gamma \text{inc}}$ is virtually equal to $v_2^{\gamma \text{bg}}$ with small uncertainty, as shown on panel (b) of Fig. 1 (note that the uncertainty on their difference is small since it is dominated by the common reaction-plane uncertainty). On the other hand, $R_\gamma(p_T)$ is larger than 1.0 with small uncertainty [5]; these combine to make the second term in Eq. (2) small, also with small uncertainty.

A major issue in any azimuthal-asymmetry measurement is the potential bias from where in pseudorapidity the (event-by-event) reaction plane is measured. At low
where multiplicities are high and particle production is dominated by the bulk with genuine hydrodynamic behavior—there is no difference between the flow derived with BBC and RXN. However, at higher p_T we observe that the v_2 values using BBC and RXN diverge less for inclusive photons, particularly for π^0 [panel (a) in Fig. 1]. For direct photons [panel (c)], the two results are apparently consistent within their total uncertainty, including the uncertainty $\delta R_y/R_y$ (see Table I). However, R_y is a common correction factor in the v_2 measurements with both reaction-plane detectors.

Event substructure not related to bulk properties and expansion—most notably jets—can bias the reaction-plane measurement, particularly at higher p_T and lower multiplicity. Observation of a high-p_T particle practically guarantees the presence of a jet, which in turn modifies the event structure over a large η range. The bias on the true event plane (with the bulk as its origin) is stronger if the overall multiplicity is small and if the η gap between the central arm (where v_2 is measured) and the reaction-plane detector is reduced. The bias in Fig. 1 is largest for π^0, since high-p_T hadrons are always jet fragments. Inclusive photons are a mixture of hadron decay photons, inheriting the bias seen in π^0 and the mostly unbiased direct photons, therefore, the difference between BBC and RXN is smaller. Finally, the bias is smallest (but nonzero) for direct photons, of which only a relatively small fraction (jet-fragmentation photons) exhibit bias.

Figure 2 shows v_2 for minimum-bias collisions and two centrality bins versus p_T for π^0, inclusive photons, and direct photons. For reaction-plane determination the BBC is used because it is farthest from midrapidity where v_2 is measured. Despite the fact that there is a significant direct (thermal) photon yield at low p_T [5], the π^0 and inclusive-photon v_2 is virtually identical there. Note that the surprisingly large inclusive-photon v_2 is confirmed by the (so far preliminary) results with a completely different analysis technique [15]. For direct photons at low p_T we observe a pronounced positive $v_2^{\gamma,\text{dir}}$ signal, increasing with decreasing centrality and comparable to the π^0 flow, but then rapidly going toward zero at 5–6 GeV/c. Qualitatively this shape is similar to the prediction for very early thermalization times, 0.4–0.6 fm/c in [19], namely, the p_T where $v_2^{\gamma,\text{dir}}$ reaches its maximum is consistent with our measurement [see panel (d) in Fig. 2], but its calculated magnitude is too small. The situation is similar for the calculation with $\tau_0 = 0.2$ fm/c and vanishing viscosity in [7]. The model in [20] combines somewhat later thermalization time (0.6 fm/c) with partial chemical equilibrium in the hadronic phase, reproducing the shape, but still predicts smaller $v_2^{\gamma,\text{dir}}$ at low p_T than the observed one. While such large direct-photon v_2 could be attributed in principle to a dominant production mechanism at the later stage when bulk flow is already developed [21,22], simultaneously explaining the large values of $v_2^{\gamma,\text{dir}}$ at ~2 GeV/c and its vanishing above 5 GeV/c remains a challenge to current theories (see, for instance, a recent model comparison to the current data in Fig. 5 of [22]).

Figure 3 shows the high-p_T integrated v_2 ($p_T > 6$ GeV/c) for π^0 and photons (inclusive and direct) as a function of centrality. The low-N_{part} behavior is strongly influenced by the location in pseudorapidity of the reaction-plane detector. The π^0 v_2 is comparable to other hadrons and is higher than the inclusive-photon v_2, which is diluted by direct photons. The two direct-photon-v_2 measurements [panel (c)] are consistent with zero (and each other) at all centralities within their total systematic uncertainties. While zero $v_2^{\gamma,\text{dir}}$ would be expected if initial hard scattering is the dominant (sole considered) source of photons, the typical contribution from jet conversion only is $v_2^{\gamma,\text{dir}} \sim -0.02$ and from fragmentation is $v_2^{\gamma,\text{dir}} \leq 0.01$, weighted with the fraction of photons coming from these
specific processes [3,7]. Currently the experiment is not sensitive to their negative/positive contributions to v_2^{dir}.

In conclusion, we measured v_2 of π^0, inclusive and direct photons in the $1 < p_T < 12$ GeV/c range for minimum bias and selected centralities in $\sqrt{s_{NN}} = 200$ GeV Au + Au collisions. At higher p_T (> 6 GeV/c) the direct-photon v_2 is consistent with zero at all centralities, as expected if the dominant source of photon production is initial hard scattering. However, the experimental uncertainties are currently about a factor of 2 higher than the predicted (small) positive and negative contributions from fragmentation and jet-conversion photons, respectively. In the thermal region ($p_T < 4$ GeV/c), a positive direct-photon v_2 is observed, which is comparable in magnitude to the π^0 v_2 and consistent with early thermalization times and low viscosity.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.), Ministry of Education, Culture, Sports, Science, and Technology (Japan), the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (P.R. China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the U.S.-Hungarian Fulbright Foundation for Educational Exchange, and the U.S.-Israel Binational Science Foundation.

*Deceased.
†PHENIX Spokesperson.
jacak@skipper.physics.sunysb.edu