Homonuclear dipolar recoupling of arbitrary pairs in multi-spin systems under magic angle spinning: A double-frequency-selective ZQ-SEASHORE experiment

Thumbnail Image
Date
2019-05-14
Authors
Kobayashi, Takeshi
Wang, Zhuoran
Pruski, Marek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

We describe a useful method for measuring the internuclear distances within arbitrarily selected pairs of like nuclei in dipolar-coupled multi-spin systems. The method uses a combination of the zero-quantum shift-evolution-assisted selective homonuclear recoupling (ZQ-SEASHORE) technique developed by Hu and Tycko [J. Chem. Phys. 2009, 131, 045101] and double-frequency-selective radio-frequency pulse. The double-frequency-selective pulse inverts polarizations of two spins simultaneously, and thus applications of the method presented here are only limited by the spectral resolution, and not by the number of interacting spins. Our experiments demonstrate the validity of the method and present analytical expressions for the dephasing curve.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections