On the Number of Water Molecules Necessary To Stabilize the Glycine Zwitterion

Thumbnail Image
Supplemental Files
Date
1995-08-01
Authors
Jensen, Jan
Gordon, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A thorough ab initio study of how the addition of successive water molecules shifts the gas phase zwitterionneutral equilibrium of the amino acid glycine toward that of the solution phase is presented. Of particular interest is the number of water molecules necessary to stabilize the zwitterion, and how the solvent effects conformational preference. It is found that two water molecules can stabilize the glycine zwitterion, that is, give rise to a potential energy minimum with at least one vibrational level. The results are analyzed and explained using localized charge distributions.

Comments

Reprinted (adapted) with permission from Journal of the American Chemical Society 117 (1995): 8159, doi:10.1021/ja00136a013. Copyright 1995 American Chemical Society

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 1995
Collections