Estimation of Ammonia Emission from Manure Belt Poultry Layer Houses Using an Alternative Mass-Balance Method

Thumbnail Image
Date
2009-06-01
Authors
Wang, Shunli
Zhao, Lingying
Wang, Xinying
Manuzon, Roderick
Li, Hui
Darr, Matthew
Keener, Harold
Heber, Albert
Ni, Ji-Qin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Darr, Matthew
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Ammonia (NH3) emission from animal feeding operations (AFOs) has caused concerns on public health and environmental degradation, such as ecosystem acidification, eutrophication, and formation of PM2.5 fine particles. Current ammonia emission measurement methodologies are accurate and reliable, but time consuming, expensive, and impractical for most facilities. In the present study, an alternative and cost effective mass balance methodology was developed to predict the ammonia emission from animal facilities. The mass balance equations have been developed to eliminate needs for tracking manure flow rate to obtain accurate NH3 estimation. The methodology was applied to three manure-belt layer poultry houses with approximately 150,000 birds in each house in Ohio and validated using continuous ammonia emission measurement data. Feed, manure and egg samples were collected from the three houses in three seasons (cold, mild, and hot) to evaluate the seasonal variation of ammonia emission from the poultry facilities. Results show that this alternative mass balance method can estimate NH3 emission from manure-belt poultry layer house effectively. NH3 emission rate from manure belt poultry layer houses with manure removal every 3.5 to 5 days was 0.07-0.37 g NH3 bird-1day-1. These results agrees well with the NH3 emission values published in the previous literatures (0.027-0.616 g NH3 bird-1day-1), but were lower than the NH3 emission rate (0.1-0.86 g NH3 bird-1day-1) measured using continuous monitoring system. In the comparison analysis of NH3 measurement and estimation emissions, Normalized Mean Error (NME), Normalized Mean Square Error (NMSE) and Fractional Bias (FB) are calculated to be 52.05%, 85.32% and -70.36% respectively. This study suggests that manure removal time interval and air temperature can be important factors impacting NH3 emission. This mass balance method can only estimate total nitrogen loss in a whole production process, which is an upper bound of NH3-N loss. It is needed to quantify other nitrogen compound gas emissions, such as N2O, NOx, N2 for accurate NH3 emission estimation.

Comments

This is an ASABE Meeting Presentation, Paper No. 096723.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009