Fragility of Fermi arcs in Dirac semimetals

Thumbnail Image
Date
2019-04-17
Authors
Wu, Yun
Jo, Na Hyun
Wang, Lin-Lin
Schmidt, Connor
Neilson, Kathryn
Schrunk, Benjamin
Swatek, Przemyslaw
Eaton, Andrew
Bud’ko, Sergey
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We use tunable, vacuum ultraviolet laser based angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations to study the electronic properties of Dirac semimetal candidate cubic PtBi 2 . In addition to bulk electronic states we also find surface states in PtBi 2 , which is expected as PtBi 2 was theoretically predicated to be a candidate Dirac semimetal. The surface states are also well reproduced from DFT band calculations. Interestingly, the topological surface states form Fermi contours rather than double Fermi arcs that were observed in Na 3 Bi . The surface bands forming the Fermi contours merge with bulk bands in proximity to the Dirac point projections, as expected. Our data confirm the existence of Dirac states in PtBi 2 and reveal the fragility of the Fermi arcs in Dirac semimetals. Because the Fermi arcs are not topologically protected in general, they can be deformed into Fermi contours, as proposed by M. Kargarian et al. [Proc. Natl. Acad. Sci. USA 113, 8648 (2016)]. Our results demonstrate the validity of this theory in PtBi 2 .

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections