Design government incentive schemes for promoting electric taxis in China

Thumbnail Image
Date
2018-04-01
Authors
Yang, Jie
Dong, Jing
Hu, Liang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Dong-O'Brien, Jing
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental Engineering
Abstract

This paper presents an optimization framework to determine the government incentive schemes to promote battery electric vehicle (BEV) taxis. The impacts of drivers’ operating behaviors, charger network coverage, BEV range, vehicle costs, and energy prices are taken into account. A two-stage optimization model is proposed, which describes the interplay between the government subsidy scheme and taxi drivers’ acceptance of BEVs. To quantify drivers’ acceptance, a data-driven microsimulation model is used to simulate driving and charging activities based on GPS trajectory data collected from conventional gasoline taxis in Changsha, China. The optimal government subsidy scheme is solved using the genetic algorithm. The key findings include: (1) detour for charging is inevitable for BEV taxis and would cause significant disruption in operational activities, especially for small-range BEVs (e.g. 150 km). (2) Subsidizing on vehicle purchase is necessary, and the subsidy intensity is expected to maintain at the current level to achieve an electrification goal of more than 50%. The government should provide financial support for public charging exclusive of vehicle purchase. (3) Different taxi drivers might prefer different BEV ranges, thereby they should be allowed to select from diversified BEV models, instead of deploying a single vehicle model for the entire taxi fleet.

Comments

This is a manuscript of an article published as Yang, Jie, Jing Dong, and Liang Hu. "Design government incentive schemes for promoting electric taxis in China." Energy Policy 115 (2018): 1-11. DOI: 10.1016/j.enpol.2017.12.030. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections