2010

2002 Grape Cultivar Trial Performance in 2009

Paul A. Domoto
Iowa State University, domoto@iastate.edu

Gail R. Nonnecke
Iowa State University, nonnecke@iastate.edu

Dennis N. Portz
Iowa State University

Leah B. Riesselman
Iowa State University, lriessel@iastate.edu

Bernard J. Havlovic
Iowa State University, bhavlovi@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, Agriculture Commons, Fruit Science Commons, and the Horticulture Commons

Recommended Citation
Domoto, Paul A.; Nonnecke, Gail R.; Portz, Dennis N.; Riesselman, Leah B.; Havlovic, Bernard J.; and Howell, Nicholas P., "2002 Grape Cultivar Trial Performance in 2009" (2010). Iowa State Research Farm Progress Reports. 300.
http://lib.dr.iastate.edu/farms_reports/300

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
2002 Grape Cultivar Trial Performance in 2009

Abstract
To identify grape cultivars adapted to Iowa, a cultivar by management system trial was established in 2002 at the Iowa State University (ISU) Horticulture Research Station (HRS) and the ISU Armstrong Research Farm (ARF) with a grant from the Leopold Center of Sustainable Agriculture. Fifteen cultivars, including ten wine and five seedless table cultivars, were being evaluated under three management systems that were discontinued in 2008. This report summarizes the cultivar performance for the 2009 growing season.

Keywords
RFR A9078, Horticulture

Disciplines
Agricultural Science | Agriculture | Fruit Science | Horticulture

Authors
Paul A. Domoto, Gail R. Nonnecke, Dennis N. Portz, Leah B. Riesselman, Bernard J. Havlovic, and Nicholas P. Howell

This armstrong research and demonstration farm is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/farms_reports/300
2002 Grape Cultivar Trial Performance in 2009

RFR-A9078

Paul Domoto, professor
Gail Nonnecke, university professor
Department of Horticulture
Dennis Portz, Leah Riesselman, ag specialist
Bernie Havlovic and Nick Howell,
farm superintendents

Introduction
To identify grape cultivars adapted to Iowa, a
cultivar by management system trial was
established in 2002 at the Iowa State
University (ISU) Horticulture Research
Station (HRS) and the ISU Armstrong
Research Farm (ARF) with a grant from the
Leopold Center of Sustainable Agriculture.
Fifteen cultivars, including ten wine and five
seedless table cultivars, were being evaluated
under three management systems that were
discontinued in 2008. This report summarizes
the cultivar performance for the 2009 growing
season.

Materials and Methods
The vines were spaced 8 × 10 ft apart
(545 vines/A) with three vines/replication.
Treatments were replicated 15 times at HRS
and nine times at ARF (previous 5 and
3 replications × 3 management systems,
respectively). Vines were trained to a bilateral
cordon system on a two-wire trellis with wires
at 3.5 ft and 6.0 ft above the ground. Vines
with a procumbent growth habit were being
trained to the top wire, while those with a
semi-upright to upright growth habit were
trained to the mid-level wire with vertical
shoot positioning (VSP) being practiced.

A mid-January freeze severely affected
grapevines at each of the planting sites
(Table 1). In mid-March, five proximal (basal)
buds on two canes/vine (30 buds/replication)
were dissected and evaluated for primary bud
injury. Bud retention was based on pruning
weight, and adjusted for primary bud mortality
when injury exceeded 15% for American
cultivars and 20% for French-American
hybrid cultivars. Date of bud break was
recorded at both sites. Following bud break,
trunks killed to the ground were counted, and
the length of established 2-year-old cordon
was measured. During the growing season,
vines at both sites were exposed to growth
regulator herbicide drift and were rated for the
severity of injury. Following veraison, berry
samples were collected from the mid-cluster
position to test for maturity based on
percentage soluble solids (% SS), initial pH,
and titratable acids (TA). Time of harvest was
based upon these measurements, and fruit
condition. At harvest, the number of
clusters/vine were counted and weighed.

Results and Discussion
During the 2008–09 winter, vines were
exposed to four significant freezes with HRS
recording the lowest temperatures (Table 1).
When cane buds were examined for injury
prior to pruning, greater injury was found at
HRS than at ARF (Table 2). At both sites, the
injury was generally greatest on cultivars
classified as being “slightly hardy” to
“moderately hardy,” while those classified as
being “very hardy” exhibited the least bud
injury. There was also a higher incidence of
trunks killed to the ground at HRS than at
ARF, particularly on the less hardy cultivars
(Table 2).

Based on pruning weights and feet of
established cordon, less hardy cultivars
generally grew better at ARF than at HRS,
while hardy cultivars had similar pruning
weights and feet of established cordon at each
site (Table 2).
Vines at both sites were again exposed to growth regulator herbicide drift during the growing season (Table 2). At both sites, Maréchal Foch and Vanessa exhibited the greatest injury. Chambourcin, Seyval blanc, Vignole, La Crosse, and Frontenac did not exhibit injury at either site.

The 2009 growing season was characterized by cooler than normal growing conditions with the departure from normal for growing degree days being the greater at HRS than at ARF (Table 1). As a result, harvest was delayed compared with previous years with several late maturing cultivars being harvested after the first killing frost and before they obtained proper maturity (Table 3). Cultivars at ARF generally matured earlier than at HRS. Yield/vine and average cluster weights were lower than in previous years, particularly on the less hardy cultivars, which suffered the greatest bud injury and had a greater percentage of trunks killed to the ground.

Generally, yields per vine were higher on cold hardy cultivars than on moderately hardy cultivars.

Acknowledgements
Thanks to the Leopold Center for Sustainable Agriculture for providing the initial grant to establish these plantings and the Iowa Grape and Wine Commission for previous funding. Thanks to the staff at the ISU Horticulture Station and the ISU Armstrong Farm for their assistance in maintaining the plantings.

Table 1. Significant minimum temperatures (°F) recorded during the 2008–09 winter and 2009 fall and accumulated growing degree days from May 1 to October 1, 2009.

<table>
<thead>
<tr>
<th>Date</th>
<th>ARF</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum temperatures (°F):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec. 22</td>
<td>-11</td>
<td>-14</td>
</tr>
<tr>
<td>Jan. 15, 16</td>
<td>-20</td>
<td>-25</td>
</tr>
<tr>
<td>Jan. 24</td>
<td>-3</td>
<td>-9</td>
</tr>
<tr>
<td>Jan. 28</td>
<td>-6</td>
<td>-11</td>
</tr>
<tr>
<td>Oct. 10</td>
<td>25</td>
<td>24</td>
</tr>
</tbody>
</table>

Growing Degree Days (base 50°F, cap. 86°F):
May 1 to Oct. 1\(^{a}\) 2,605 2,498
Departure from avg. -250 -333
Days above 86°F 11 8

\(^{a}\)From the ISU Ag Climate Network.
Table 2. Primary bud injury and percentage of trunks killed following exposure to freezes during the 2008–09 winter, pruning weight, feet of established cordon, and herbicide drift injury recorded during the 2009 growing season for 15 grape cultivars in the ISU 2002 grape cultivar by management system trial planted at the Armstrong Research Farm (ARF) and Horticulture Research Station (HRS).

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Relative hardiness</th>
<th>% Primary bud injury</th>
<th>% Trunks killed</th>
<th>Pruning weight (lb)</th>
<th>Feet of cordon per vine</th>
<th>Herbicide drift injury</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARF</td>
<td>HRS</td>
<td>ARF</td>
<td>HRS</td>
<td>ARF</td>
<td>HRS</td>
</tr>
<tr>
<td>Chambourcin</td>
<td>3</td>
<td>41</td>
<td>92</td>
<td>9</td>
<td>84</td>
<td>3.1</td>
</tr>
<tr>
<td>Traminette</td>
<td>4</td>
<td>32</td>
<td>65</td>
<td>2</td>
<td>62</td>
<td>3.0</td>
</tr>
<tr>
<td>Seyval blanc</td>
<td>4</td>
<td>38</td>
<td>90</td>
<td>2</td>
<td>7</td>
<td>2.2</td>
</tr>
<tr>
<td>Vignole</td>
<td>4</td>
<td>30</td>
<td>77</td>
<td>0</td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td>Cynthiana</td>
<td>4</td>
<td>29</td>
<td>67</td>
<td>0</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td>Maréchal Foch</td>
<td>5</td>
<td>23</td>
<td>32</td>
<td>0</td>
<td>3</td>
<td>1.8</td>
</tr>
<tr>
<td>Edelweiss</td>
<td>5</td>
<td>16</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>La Crosse</td>
<td>5</td>
<td>24</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>St. Croix</td>
<td>6</td>
<td>33</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>Frontenac</td>
<td>6</td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Marquis</td>
<td>4</td>
<td>42</td>
<td>88</td>
<td>12</td>
<td>58</td>
<td>1.8</td>
</tr>
<tr>
<td>Vanessa</td>
<td>4</td>
<td>36</td>
<td>89</td>
<td>2</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4</td>
<td>42</td>
<td>93</td>
<td>0</td>
<td>59</td>
<td>2.5</td>
</tr>
<tr>
<td>Reliance</td>
<td>4</td>
<td>39</td>
<td>91</td>
<td>2</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Mars</td>
<td>4</td>
<td>42</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

LSD, P < .05

10 9 0.4 0.6 0.8 1.1 0.3 0.3

Rel. cold hardiness (temperature range at which injury begins to occur): 3 = cold tender/slightly hardy (-5°F); 4 = moderately hardy (-10°F); 5 = hardy (-15°F); 6 = very hardy (-20°F).

Herbicide injury scale 1–6: 1 = no apparent injury; 2 = slight symptoms of abnormal venation; 3 = moderate; 4 = severe; 5 = very severe; 6 = extremely severe.

Trained to a mid-wire cordon with catch wires.

Planted in 2003.
Table 3. Fruit yield and harvest characteristics in 2009 for 15 grape cultivars in the ISU 2002 grape cultivar
by management system trial planted at the Armstrong Research Farm and Horticulture Research Station.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>ISU Armstrong Research Farm</th>
<th>ISU Horticulture Research Station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harvest Date</td>
<td>%</td>
</tr>
<tr>
<td>Seyval blanc</td>
<td>8/28</td>
<td>16.5</td>
</tr>
<tr>
<td>Edelweiss</td>
<td>8/29</td>
<td>13.3</td>
</tr>
<tr>
<td>La Crosse</td>
<td>9/4</td>
<td>15.6</td>
</tr>
<tr>
<td>St. Croix</td>
<td>9/8</td>
<td>16.6</td>
</tr>
<tr>
<td>Frontenac</td>
<td>9/17</td>
<td>21.8</td>
</tr>
<tr>
<td>Vignole</td>
<td>9/21</td>
<td>20.8</td>
</tr>
<tr>
<td>Traminette</td>
<td>9/22</td>
<td>20.0</td>
</tr>
<tr>
<td>Chambourcin</td>
<td>10/13</td>
<td>21.2</td>
</tr>
<tr>
<td>Cynthiana</td>
<td>10/13</td>
<td>19.7</td>
</tr>
<tr>
<td>Vanessa</td>
<td>8/25</td>
<td>17.8</td>
</tr>
<tr>
<td>Reliance</td>
<td>8/25</td>
<td>18.5</td>
</tr>
<tr>
<td>Jupiter</td>
<td>8/31</td>
<td>21.6</td>
</tr>
<tr>
<td>Mars</td>
<td>9/10</td>
<td>17.7</td>
</tr>
<tr>
<td>Marquis</td>
<td>9/10</td>
<td>17.6</td>
</tr>
</tbody>
</table>

LSD, P < .05
2.6 .06 2.6 .05

Titratable acids reported in grams/liter.
Planted in 2003.
Cultivar was included in student projects.
Harvested early or after the killing frost.
Harvested from September 10 to 25.