Mg assisted flux growth and characterization of single crystalline Sm2Co17

Tej Nath Lamichhane
Iowa State University and Ames Laboratory, tejl@iastate.edu

Qisheng Lin
Iowa State University and Ames Laboratory, qslin@ameslab.gov

Valentin Taufour
Iowa State University and Ames Laboratory

Andriy Palasyuk
Ames Laboratory, palasyuk@ameslab.gov

Tribhuwan Pandey
Oak Ridge National Laboratory

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts

Part of the Biological and Chemical Physics Commons, and the Materials Chemistry Commons

Recommended Citation

Lamichhane, Tej Nath; Lin, Qisheng; Taufour, Valentin; Palasyuk, Andriy; Pandey, Tribhuwan; Parker, David; Bud’ko, Sergey L.; and Canfield, Paul C., "Mg assisted flux growth and characterization of single crystalline Sm2Co17" (2019). *Ames Laboratory Accepted Manuscripts*. 310.
https://lib.dr.iastate.edu/ameslab_manuscripts/310

This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Mg assisted flux growth and characterization of single crystalline Sm$_2$Co$_{17}$

Abstract

This paper presents details of Mg-assisted flux growth of Sm$_2$Co$_{17}$ single crystals in a Ta crucible well below the melting temperature of binary Sm$_2$Co$_{17}$. Both the crushed single crystalline powder x-ray diffraction (XRD) and single crystalline XRD data revealed the Th$_2$Zn$_{17}$ type rhombohedral ($R-3m$) crystal structure. Ta atom is found to be statistically replacing the Co-Co dumbbell with its position being at the center of the dumbbell. The Curie temperature of our lightly Mg and Ta doped Sm$_2$Co$_{17}$ sample is determined to be ~ 1100 K using method of generalized Bloch law fitting of easy axis spontaneous magnetization data.

Disciplines

Biological and Chemical Physics | Materials Chemistry

Authors

Tej Nath Lamichhane, Qisheng Lin, Valentin Taufour, Andriy Palasyuk, Tribhuwan Pandey, David Parker, Sergey L. Bud’ko, and Paul C. Canfield

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/ameslab_manuscripts/310
Mg assisted flux growth and characterization of single crystalline Sm$_2$Co$_{17}$

Cite as: AIP Advances 9, 035138 (2019); https://doi.org/10.1063/1.5080117
Submitted: 05 November 2018 . Accepted: 16 January 2019 . Published Online: 19 March 2019

Tej Nath Lamichhane, Qisheng Lin, Valentin Taufour, Andriy Palasyuk, Tribhuwan Pandey, David Parker, Sergey L. Bud’ko, and Paul C. Canfield

ARTICLES YOU MAY BE INTERESTED IN

Control system for automated drift compensation of the stand-alone charge amplifier used for low-frequency measurement
AIP Advances 9, 035133 (2019); https://doi.org/10.1063/1.5064631

Polarity-dependent resistance switching in crystalline Ge$_7$Sb$_4$Te$_7$ film
AIP Advances 9, 035131 (2019); https://doi.org/10.1063/1.5092633

In-plane electrical impedance as a probe for the electron nematicity of BaFe$_2$As$_2$
AIP Advances 9, 035140 (2019); https://doi.org/10.1063/1.5082656
Mg assisted flux growth and characterization of single crystalline Sm$_2$Co$_{17}$

Cite as: AIP Advances 9, 035138 (2019); doi: 10.1063/1.5080117
Presented: 16 January 2019 • Submitted: 5 November 2018 • Accepted: 16 January 2019 • Published Online: 19 March 2019

Tej Nath Lamichhane, Qisheng Lin, Valentin Taufour, Andriy Palasyuk, Tribhuwan Pandey, David Parker, Sergey L. Bud’ko, and Paul C. Canfield

AFFILIATIONS
1 Ames Laboratory, Iowa State University, Ames, Iowa 50011, U.S.A.
2 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A.
3 Department of Physics, University of California Davis, Davis, California 95616, U.S.A.
4 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.

Note: This paper was presented at the 2019 Joint MMM-Intermag Conference.

Electronic mail: Corresponding: tejl@iastate.edu

ABSTRACT
This paper presents details of Mg-assisted flux growth of Sm$_2$Co$_{17}$ single crystals in a Ta crucible well below the melting temperature of binary Sm$_2$Co$_{17}$. Both the crushed single crystalline powder x-ray diffraction (XRD) and single crystalline XRD data revealed the Th$_2$Zn$_{17}$ type rhombohedral (R-3m) crystal structure. Ta atom is found to be statistically replacing the Co-Co dumbbell with its position being at the center of the dumbbell. The Curie temperature of our lightly Mg and Ta doped Sm$_2$Co$_{17}$ sample is determined to be \sim1100 K using method of generalized Bloch law fitting of easy axis spontaneous magnetization data.

I. INTRODUCTION
Despite of the wide application of Sm$_2$Co$_{17}$ as a high performance magnet, its basic physical properties are not as extensively studied as other high flux commercial permanent magnets such as Nd$_2$Fe$_{14}$B, SmCo$_5$, probably due to the lack of easily accessible single crystalline sample. Various physical properties of single crystalline Nd$_2$Fe$_{14}$B sample are studied on self flux grown sample. In case of SmCo$_5$ and other high cobalt content binary R-Co compounds single crystals, the traditional self-flux growth technique out of binary melt is not readily accomplished. Most of the Sm-Co binary compounds are highly reactive with traditional ceramics crucibles and mostly peritectic with very high exposed liquidus temperature (\geq1300 $^\circ$C). Single crystal growth by zone melting, Bridgman and Czochralski technique are also difficult because of high reactivity of Sm-Co compounds and high vapour pressure of Sm. The quality of Bridgman technique grown crystals strongly depend on the quality and type of the crystal growth crucibles and also needs an excess amount of Sm. The Bridgman technique for SmCo$_5$ growth was successful only using the Ta crucible. For Sm$_2$Co$_{17}$, the pyrolitic sintered BN-crucible could not assist crystal growth. Additionally, the BN-coated recrystallized Al$_2$O$_3$ crucible also produced a reacted complex layer containing Al, B, N and R when reached up to 1400 $^\circ$C during the Bridgman crystal growth technique. In this work we use Mg-flux to reduce the melting temperature and allow for the use of a sealed Ta crucible to hold the melt to get single crystals. More importantly, this Mg assisted flux growth technique might open a route for the availability of most of R$_2$T$_{17}$ single crystals which are surprisingly rare so far e.g. Sm$_2$Fe$_{17}$.6

II. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Crystal growth and structural characterization
Sm$_2$Co$_{17}$:Mg$_{24}$ composition was loaded in a 3-capped Ta crucible and growth profile similar to Ce$_{1-x}$Mg$_x$:Co$_5$ was used for the crystal growth. The single crystals were separated from the flux at 1150$^\circ$C after cooling the ampoule from 1200 $^\circ$C over 99 h. The plate like Sm$_2$Co$_{17}$ crystals have [001] axis perpendicular to
Then the as grown single crystals of $\text{Sm}_2\text{Co}_{17}$ were characterized using Scanning Electron Microscopy (SEM) technique. As grown crystals were mounted in a SEM sample-mounting epoxy both parallel and perpendicular to the plate to access both planar and cross sectional area of samples and finely polished to obtain the smooth surfaces as shown in Fig. 2. Figure 2(a) and (b) show the fine polished more or less homogeneous composition both in planar and cross sectional back scattered SEM images of $\text{Sm}_2\text{Co}_{17}$ samples. Interestingly, even though the backscattered images looks uniform, the Energy Dispersive X-ray Spectroscopy (EDS) spectra showed small presence of Mg and Ta in the sample with an average composition of $\text{Sm}_2\text{Co}_{16.69}\text{Ta}_{0.31}$.

![Backscattered Laue photograph](image1)

FIG. 1. (a) $\text{Sm}_2\text{Co}_{16.69}\text{Ta}_{0.31}$ single crystals over the millimeter grid (b) Laue pattern with beam direction [001]. Although the crystals are not looking hexagonal, the back-scattered Laue photograph is hexagonal. (c) Rietveld refined powder XRD for $\text{Sm}_2\text{Co}_{16.69}\text{Ta}_{0.31}$. I_{Obs}, I_{Cal}, I_{Bkg} and $I_{\text{Obs - Cal}}$ are experimental, calculated, fitted background and differential diffractrogram data respectively. The vertical lines represent the various diffraction Bragg peaks.

![SEM images](image2)

FIG. 2. (a) SEM image of as grown $\text{Sm}_2\text{Co}_{16.69}\text{Ta}_{0.31}$ single crystal along the planar view (b) along the cross section.
Then we got motivated to know the specific structural site of Mg and Ta in the structure and employed a single crystalline XRD analysis. Single crystal XRD intensity data for an as grown single crystal were collected using Bruker smart Apex-II diffractometer (MoKα, λ = 0.71073 Å) and analysed using SHELXTL structure solution software. In total, 5665 reflections were collected using 0.05° scans in ω. The average exposure time was 10 sec and the crystal to detector distance was 60 mm. In the structure solution, Mg could be included in the specific Co site but the composition is never higher than error bar. Then we dropped Mg in the composition formula. Ta atoms were found to substitute the center of Co-Co dumbbell as shown in Fig. 3(a). The structure of Sm$_2$Co$_{16.69}$Ta$_{0.31}$ (R-3m) features parallel hexagonal tunnels (defined by Co2-Co4 atoms) running along the c axis, cf. Figure 3(b). The tunnels are alternately filled by Co1-Co1 dimers and Sm atoms. In the present structure, Ta is statistically substituted for Co-Co dumbbell with Ta position being at the center of Co-Co dumbbell as shown in Figure 3(c), consistent with Zr atom position in Zr doped Sm$_2$Co$_{17}$ magnet alloy predicted via lattice relaxation calculation, with a refined occupancy of 2.6(2)%.

Refined crystallographic information data and conditions are presented in Table I and II below.

B. Determination of Curie temperature

Temperature and field dependent magnetization data were obtained along easy axis of Sm$_2$Co$_{16.69}$Ta$_{0.31}$ single crystals using Quantum Design vibrating sample magnetometer (VSM: 300 K - 1000 K). The Curie temperature of Sm$_2$Co$_{17}$ single crystalline sample is reported to fall in between 1080 K to 1180 K window. Getting the Curie tail of Sm$_2$Co$_{16.69}$Ta$_{0.31}$ to estimate
the transition temperature is not possible in commercially available magnetometers like QD VSM with oven option. In order to estimate the Curie temperature we used the method of generalized Bloch fitting of spontaneous magnetization data. Spontaneous magnetization data were obtained via the Y-intercept of linear fit of saturation magnetization data at various temperatures as shown in Fig. 4 for 300 K. The two tiny triangular vortexes in the $M(H)$ loop might be the signature of ferrimagnetic coupling between Sm and Co demonstrated by domain wall movement at high field. Such spontaneous magnetization data were taken up to 1000 K for each interval of 50 K starting from the room temperature. To reduce the uncertainty, spontaneous magnetization data were measured using a well-polished sample which could be better aligned along the easy axis during the measurements. The generalized Bloch Law was fitted as $M_s(T)/M_s(2K) = (1 - (T_c/T)^α)^β$ shown in the inset of Figure 4 and the Curie temperature is inferred to be 1100 K. Here $M_s(2K)$ and $M_s(T)$ are the base temperature and high temperature spontaneous magnetization data and T_c is the Curie temperature. The fitted value of $α$ and $β$ are found to be 2.53 ± 0.07 and 0.49 ± 0.02 respectively.

III. CONCLUSIONS

Single crystalline Sm$_2$Co$_{17}$ samples were prepared using Mg assisted self-flux growth technique in a 3-caped Ta crucible. In case of Sm$_3$Co$_{17}$, Ta is found to be statistically distributed in the center of Co-Co dumbbell with an empirical formula Sm$_3$Co$_{16.69}$Ta$_{0.31}$. The Curie temperature of Sm$_3$Co$_{16.69}$Ta$_{0.31}$ is determined to be \(\sim 1100 \) K using the generalized Bloch law method.

ACKNOWLEDGMENTS

Dr. Warren Straszheim is acknowledged for doing SEM on various samples. This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was also supported by the office of Basic Energy Sciences, Materials Sciences Division, U.S. DOE. This work was performed at the Ames Laboratory, operated for DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

REFERENCES

