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Verifying Fault-Tolerance of Sensor Network Applications Using Auto-
generated Fault Injection Mechanisms

Abstract

The deployment scenarios for sensor networks are often hostile. These networks also have to operate
unattended for long periods. Therefore, fault-tolerance mechanisms are needed to protect these networks
from various faults such as node failure due to loss of power, compromise, etc and link failure due to network
intrusion, etc. A number of fault-tolerance techniques have been developed specifically for wireless sensor
networks. Verifying these fault-tolerant techniques is necessary for reliability and dependability checks.
Formal methods such as model checking have been used for verification of such fault-tolerance mechanisms;
however, building the models is a tedious job which makes model checking a hard task to accomplish.
Techniques that allow model checking source code ease this task. These approaches automate the process of
verification model construction. There are two aspects of automated verification model construction. First, a
model of the application needs to be built. Second, a model of faults has to be created to expose problems with
the application. In a previous work, we developed a framework, which we called Slede, to automatically
extract PROMELA models from sensor network applications written in the nesC language. The contribution
of this work is the design and implementation of a mechanism for automatically generating fault models from
a partial specification of the application. By automatically generating fault models, our approach eases the
verification of fault-tolerance for sensor network applications.
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ABSTRACT

The deployment scenarios for sensor networks are often hostile.
These networks also have to operate unattended for long periods.
Therefore, fault-tolerance mechanisms are needed to protect these
networks from various faults such as node failure due to loss of
power, compromise, etc and link failure due to network intru-
sion, etc. A number of fault-tolerance techniques have been de-
veloped specifically for wireless sensor networks. Verifying these
fault-tolerant techniques is necessary for reliability and dependabil-
ity checks. Formal methods such as model checking have been
used for verification of such fault-tolerance mechanisms; however,
building the models is a tedious job which makes model checking
a hard task to accomplish. Techniques that allow model checking
source code ease this task. These approaches automate the process
of verification model construction. There are two aspects of auto-
mated verification model construction. First, a model of the appli-
cation needs to be built. Second, a model of faults has to be cre-
ated to expose problems with the application. In a previous work,
we developed a framework, which we called Slede, to automati-
cally extract PROMELA models from sensor network applications
written in the nesC language. The contribution of this work is the
design and implementation of a mechanism for automatically gen-
erating fault models from a partial specification of the application.
By automatically generating fault models, our approach eases the
verification of fault-tolerance for sensor network applications.
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1. INTRODUCTION

Many informal and formal verification techniques are applied
to verify the dependendability of fault-tolerance mechanisms. In
one specific domain namely sensor networks, common verification
techniques applied include simulating the system behavior using
a commonly used simulator called TOSSIM [17], manual Fagan-
style code inspection [8], and test runs of the protocol implemen-
tation on sensor network test beds. For example, Koushanfar et al
demonstrated effictiveness of their fault-tolerance mechanism us-
ing canonical examples [16].

Partial but systematic informal verification can often reveal faults
and improve confidence in program behavior; however, the prob-
lem with testing and simulation is that it does not necessarily pro-
vide a complete validation of the required goals due to the difficulty
of ensuring that the test cases will cover all possible fault occurence
scenarios [23]. More rigourous alternative is the use of formal
methods such as model checking (e.g. [24, 3]) to verify whether
a system satisfies its fault-tolerance requirements. Model checking
as a verification technique has shown significant potential in recent
years [1, 10].

There are two issues with applying model checking techniques
to check fault-tolerance properties of sensor network applications.
First, building the models is just too hard, often requiring signifi-
cant model checking expertise from sensor network experts. Sec-
ond, there may be discrepancies between a hand-written model and
the actual implementation of the sensor network application, there-
fore there is no guarantee that the faults in the actual implemen-
tation are revealed by verifying the model [20]. Tools that verify
source code such as Java path finder [13], Bandera [4], etc, make
model checking more accessible to a broader audience.

In a previous work, we presented Slede, a domain-specific verifi-
cation framework for sensor network security protocols implemen-
tations [12]. Slede allows PROMELA models [14] to be extracted
from nesC [9] implementations of sensor network security proto-
cols. Slede also featured an automatic intrusion model generator.
The contribution of this work is an extension of Slede for more
rigorous verification of fault-tolerance techniques utilized in sen-
sor network applications. The key idea is to automatically generate
fault models from partial specification of the application.

We provide an annotation language for describing the partial
specification of the application. This description includes message
structures, message sequencing, topology and objectives. Based on
this description and a template for the fault injection model, our



tool generates a customized fault injection model for the sensor
network application. The extracted application model, the auto-
generated fault injection model and the verification objectives are
then fed to the SPIN model checker [14] that verifies the model
and gives a counter example in nesC (if any). We demonstrate the
various aspects of our approach through a motivating example.

In the next section, we provide some necessary background on
sensor networks and fault tolerance techniques in sensor networks.
We also briefly describe the model extraction methodology and the
verification framework Slede proposed by our previous work [12].
Section 3 illustrates the benefit of verifying sensor network appli-
cation directly from the code through an example. Our approach
for generating the fault injection models is described in Section 4.
Section 5 discusses related work and Section 6 concludes.

2. BACKGROUND

In this section, we briefly describe key ideas in sensor networks,
fault-tolerance techniques used in sensor networks and the nesC
language, the dominant implementation language for sensor net-
work paradigm [9].

2.1 Sensor Networks

A sensor network is a collection of low cost, small form factor,
embedded devices called sensor nodes. A sensor node is often bat-
tery operated and therefore power constrained. A typical sensor
node such as Berkeley Mote runs on two AA batteries and is of-
ten expected to operate for up to 3-6 months without maintenance.
These nodes typically also have limited computational, communi-
cation and storage capacity.

In the last few years, wireless sensor networks have been de-
ployed in both civil and military applications such as volcanic erup-
tion monitoring, target monitoring, security and remote surveil-
lance [7]. These networks are often deployed unattended for long
periods of time. Therefore, it is important that fault-tolerance
mechanisms are put in place to guard against physical failures such
as battery running out, etc and malicious outside behaviors such as
network intrusion.

2.2 Fault-tolerance Techniques for Sensor
Network Applications

Fault-tolerance mechanisms such as double and triple fault-
tolerance techniques have proven to be effective for traditional en-
vironments, where for all practical purposes it is assumed that op-
erating nodes have no limits on storage space, bandwidth and com-
putational power.

These assumptions about storage space, bandwidth, and compu-
tational power no longer hold in resource constrained environments
such as sensor networks. Therefore, traditional fault-tolerance
techniques are not very effective in these environements [16].
Many fault-tolerance techniques have been developed for the wire-
less sensor networks. For example, Gupta and Younis [11] pro-
posed a runtime recovery mechanism for failed sensors in failed
clusters that avoids full-scale re-clustering based on consensus of
healthy gateway which allows detection and handling of faults in
one faulty gateway. Koushanfar et al [16] proposed a heterogenous
back-up scheme where one type of sensors is substituted with an-
other.

2.3 The nesC Language

nesC [9] is an extension of the C language designed to develop
sensor network applications. nesC applications consist of mod-
ules, interfaces and configurations. nesC modules are similar to
early Ada and ML modules in that they cannot be instantiated, but

module CompM {
provides interface StdControl;
uses interface Timer;
}
implementation {
command result_t StdControl.init() {...}
event result_t Timer.fired() {...}

}

configuration Comp {

}

implementation {

components Main, CompM, SingleTimer;
Main.StdControl => CompM.StdControl;
CompM.Timer —=> SingleTimer.Timer;

Figure 1: A NesC Example

they serve as containers. A module can contain state declarations
(shared by other elements of the modules), command declarations
(methods) and event handlers. An event handler is similar to a
method; yet, it is executed only when the event is triggered. An
interface is a collection of related commands/events. A module
that provides an interface has to implement its commands, while a
module that uses an interface has to implement its events.

An example module in nesC is shown in Figure 1. Module
CompM provides interface StdControl, so it has to implement
the interface commands (e.g. StdControl.init ()). CompM
also uses the interface Timer, so it has to implement its events
(e.g. Timer.fired). A configuration component is responsible
for connecting the components that are using interfaces to the com-
ponents that provide their implementation. For example, compo-
nent Ma in uses interface StdControl and is wired to component
CompM. Every application has a single top-level configuration.

2.4 Slede: A Domain Specific Verification
Framework for Sensor Networks

In our previous work, we proposed Slede, a domain specific veri-
fication framework for sensor networks [12]. An overview of Slede
is presented in Figure 2. Slede features new mechanisms for ex-
tracting PROMELA models from nesC implementations and for
generating intrusion models from protocol specifications.

Slede accepts the complete nesC language. The front-end gener-
ates an abstract syntax tree of the protocol implementation, which
is then passed to the protocol model generator that is responsible
for automatically extracting verifiable PROMELA models [14].

The protocol implementation is translated as a whole into one
PROMELA process that is a global object describing the behavior
of the protocol. Every node is represented as an instance of the
generated process. To generate a finite-state model, we bound the
number of principals involved in the protocol, and provide an an-
notation language to specify a verification topology (see [12] for
details on our annotation language).

During the protocol model generation, all system calls (calls to
the libraries of TinyOS) are replaced by calls to environment mod-
els provided as Slede’s library. Slede’s library provides PROMELA
models for sending and receiving messages, LED manipulation,
etc. The pointer arithmetic is translated to embedded C code inside
the PROMELA model and the event constructs in nesC are modeled
by inserting a checking statement between every two statements in
the model, where an event handler may be executed [15].

The generated model containing the model of the protocol im-
plementation, the intrusion model and the environment models are
given as inputs to the SPIN model checker [14], which verifies
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Figure 2: Overview of the Slede Verification Framework [12]

Base Station

Figure 3: An Example Network with a 4 nodes cluster (¢ =
3) [25]

whether the model violates the objectives which have been trans-
lated into LTL formulas [21]. If the objectives are satisfied, the
protocol is verified as secure. Otherwise, SPIN produces a counter
example that violates the objectives of the fault-tolerance mecha-
nism. This counter example is then translated to a sequence of nesC
statements. The verification may not terminate if the PROMELA
model is too large.

3. MOTIVATING EXAMPLE

In this section, we give an example of a fault-tolerance mecha-
nism for sensor networks and show the benefit of verifying it from
source code as opposed to verification from abstract specification.

Zhu et al [25] propose a mechanism that protects the base sta-
tions of sensor networks from malicious faults. The protocol allows
the base station of a sensor network to detect false injected data that
may be injected from nodes compromised by the adversary, when
deploying the sensor network in a military application for example.
Such an attack is usually known as false data injection attack. The
base station can verify the authentication of information it receives
as long as the number of compromised nodes is at most #, where ¢ +
1 is the size of the smallest nodes cluster in the network. Moreover,
their scheme tries to filter out the false injected data before reach-
ing the base station, thus saving the energy of transmitting false
data from one node to another.

Figure 3 illustrates an example of a network where 7 = 3. In this
example, there is only one cluster of size (¢ + 1) with the nodes v1,
v2, v3 and cluster head. If 3 of the 4 nodes of the cluster injected
false data, then the base station will be able to detect the false in-
formation. On the other hand, if the 4 nodes of the cluster emit
false data, then the number of compromised nodes has exceeded
the threshold ¢, rendering the base station unable to detect such an
attack.

Verifying the dependability of fault-tolerance scheme such as
this one using process algebra or model checking has proven to
be an efficient approach. In order to verify this scheme using tra-
ditional techniques, the user has to specify the system, the fault
injection model as well as the failing behaviour for every fault in
the process algebra or model checking specification language. For
example, a state representing a crash extends the behavior of the
system by allowing the system to move to this state.

These fault injection models are dependent on the specification
of the system under verification. For example, Bernardeschi et
al [2] model the system as a set of CCS processes, and faults are
modelled directly by actions of the processes themselves. One con-
sequence of such dependency is that a change in the specification of
the system will require manually changing the fault injection model
accordingly, which is tedious and error-prone, specially if the fault
injection model developer is not the system model implementer.

We believe that automatic generation of fault injection models
from the implementation and specification provided as comments
in the code solves this problem. The fault models follow a fixed pat-
tern independent of the application, thus alleviating the user from
worrying about changing them when changing the implementation.
We describe our approach for fault injection model generation in
the next section.

4. AUTOMATED FAULT
MODEL GENERATION

In our approach, fault models are generated as intruders to the
network. Slede automates this process. Intruder models follow the
Dolev-Yao style intrusion model [6]. An intruder in this model can
intercept all messages and modify on their contents.

INJECTION
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The intruder can provide verification of dependability of the
fault-tolerance mechanisms. For example, in the authentication
scheme described in the previous section, the goal is to guarantee
that the base station will detect any injected false data packets when
no more than a certain number of ¢ nodes are compromised. Fault
generation in the verification of such protocol will be presented by
different intruders that can intercept messages from the legitimate
nodes. Not forwarding the messages will be a representation of the
node compromise. Injecting false data will be emulated by the in-
truder that can create a message with random values or modify on
the content of the intercepted message. The protocol should satisfy
its goal (in this example that it detects false injected data) with the
presence of such intruders who provide fault actions.

bit knowsNonceA;

active proctype Intruder () {
Crypt data, saved;

mtype msg;

do
:: network? msg,_,data -> /% Msg Intercepted */
if /+ perhaps store the message */

saved = data;

skip;
fi;

/* Replay or send message */
if /% choosing message type */
:: msg = msgl;

fi;
if /* choosing recipient x/
recipient = agentA;

fi;
if /* replay saved msg or assemble it x/
data = saved;
if
—-> data.info =
0;

knowsNonceA nonceAi;

: data.info =
fi;
fi;

network ! (msg, rcpt,data);

Figure 4: Intruder Model Pattern Based on [19]

The pattern used for the fault model generation is based on the
intruder model described in [19]. The structure of the intruder in
PROMELA is shown in Figure 4. There is one loop (lines 6-30)
where the intruder either intercept the message (line 9), or send
either the intercepted message (line 23) or a new one (lines 24-27).
The intruder is allowed to save only one message, and knows about
the structure of the messages sent.

In order to inject faults in the protocol, the intruder requires some
knowledge about the protocol such as message construct and mes-
sage sequencing. Both the construct and sequencing of the mes-
sages are almost always available. This knowledge will help re-
duce the size of the model, as opposed to an intruder that generates
purely random values which might lead to state explosion.

This information is presented as comments in the protocol imple-
mentation. An example message declaration for the fault-tolerance
mechanism described in the previous section is given in Figure 5
(lines 2-5), where a message type Hello is defined. This message
type in specification is mapped to the structure helloMsg in the
implementation, which is sent by the base station at the beginning

message Hello mapsto helloMsg({
int sender mapsto src;

® @ @

}
@ message Data mapsto datalMsg{
@ int data mapsto ev;

@

e

// other message structures
@ node SensorM CH{ }
@ node SensorM V1{ CH; }
@ node SensorM V2{ CH; }

// other nodes connections
@ node SensorM BS{ U8; }
@ protocol p {
@ (SensorM, SensorM, Hello)
@ (SensorM, SensorM, dataMsg)

// rest of message sequencing

@}
@ Leds.greenOn ()
@x/

Figure 5: An Example Verification Configuration

of the protocol. The example defines that a message of this type
will contain an integer field representing the sender of the message.
This field is mapped to the field src of the structure helloMsg.

The topology of the protocol show which nodes are connected
to each other (lines 11-15). Lines 16-18 illustrate the message se-
quencing of the protocol. Finally, the objective of the protocol is
described as reaching a state where the green LED is turned on (line
21), an action done by the base station when it ensures that the data
received from the cluster is valid.

5. RELATED WORK

Verification of fault-tolerant systems is not a new topic.
Bernardeshi er al [3] proposed to verify fault-tolerant systems
based on CSS/Meije process algebra [5]. They model the system as
a set of processes communicating with each other and interacting
with environment using actions, and model fault actions directly
by actions of the processes themselves. This requires that the fault
actions are dependent on the implementation of the model, which
requires manual resolving. On the other hand, in our approach no
manual efforts are needed.

Schneider et al [24] proposed verifying fault-tolerant systems us-
ing model checking. They define fault behavior of a faulty process
at its interface with the system and automate the generation of all
possible failure s cenarios. This is done at the design level. Our
approach is similar in spirit, but works at the implementation level.
The advantage of Schneider’s approach is that they can detect er-
rors early, in the design itself. The advantage of our approach is
that, even in cases where the implementation does not mirror the
design, we will be able to find faults.

Liu and Joseph [18] have used a single notation and model to
specify fault-tolerance, schedulability as well as timing. This is
also done at the design level, similar to Schneider’s approach. Our
approach does not yet provide schedulability; however, it has ad-
vantages similar to that over Schneider’s approach.

Rushby [22] verifies time-triggered systems from algorithm
specified as functional programs using the PVS verification sys-
tem. Their approach requires knowledge of the PVS verification
system. Our approach does not require the user to be aware of any
verification system. Instead, it hides the details of the verification



system behind an annotation language, which is very similar to the
domain-specific language nesC.

6. CONCLUSION

In this work, we presented our approach for automatic gener-
ation of fault injection models. Our work builds on our previ-
ous work, where we presented Slede a verification framework for
sensor network security protocol implementations. The key ad-
vantage of Slede is that it automatically extracts verifiable models
from nesC implementations. The approach described in this work
auto-generates fault injection models from partial specification of
the system, provided an annotations in the implementation itself.
Our approach thus makes it easier to maintain correspondence be-
tween the fault models and system models, which is hard to achieve
in manual verification methods. It also brings the advantages of
explicit-state model checking to the verification of fault tolerance
of sensor network applications.
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