Spring 2019

Connecting Adults and Children Remotely through Digital Storybooks

Breann Black
bbowe@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents

Part of the Digital Humanities Commons

Recommended Citation
https://lib.dr.iastate.edu/creativecomponents/140

This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Connecting Through Digital Storybooks
Spring 2019: HCI 598
Iowa State University

MILESTONE 1: MY IDEA

Inspired by my 18 months of travel and involvement with expatriates, I focused on designing a system that would help adults connect with loved ones and their children remotely.

MILESTONE 2: UNDERSTANDING THE PROBLEM
end of the line. Combined with timezone coordination issues and varying tech literacy, the current solution of various video chat applications proved to have its issues.

MILESTONE 3: THE DESIGN

Basing my design in the current solution of video chat, I propose incorporating digital storybooks to help increase the engagement level of the child. Using a system that helps the target users record a video or even live chat while reading a storybook, the pain points of engagement, timezone issues, and varying tech literacy could hopefully all be accommodated.
MILESTONE 4: THE (FIRST) PROTOTYPE

Initially, I utilized the wireframing tool Whimsical to create a low-fidelity prototype of the video recording flow. Relying on simplicity while focusing on main functions, the wireframe provided a solid...
MILESTONE 5: THE EVALUATION

Conducting unmoderated, remote usability tests, I decided to increase the fidelity of my prototype to compensate for the lack of moderation. Asking participants to complete three goal-related tasks, I obtained quantitative data through a post-task SEQ and a post-test SUS. Receiving positive comments from users about the potential of the concept, task completion data revealed that the biggest usability gains would most likely come from a clearer task flow and interface simplification.

Clickable High-Fidelity Prototype
Self-Reported Task Completion Actual Task Completion