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Fig. 4. Comparison of the distribution of E-Max in the brain among the coils at the vertex location.

coils from Group 1. This result confirms theoretical expectation 

since coils with single windings will exhibit less focality than 

coils with double windings.  

For coils in Group 3, the variability of the V-Half exhibited 

by each coil is different from observation with the E-Max value 

shown in Fig. 4. The stimulated area in the brain by the 3D array 

varies greatly between head models. This means V-Half with 

the 3D arrays is also very sensitive to the different anatomical 

variations. The 3D array #3 exhibits the least focality and the 

lowest E-max among the coils in group 3. On the contrary, the 

double 25 mm coil induces an E-field with the highest intensity. 

It also exhibits a much higher focality (lower V-Half) than the 

other coils in the group. 

 

B. Coils positioned at the DLPFC  

i. E-Max brain 

Fig. 6 presents the 9 different coil configurations while 

positioned over the DLPFC of one of the head models. The 

same coil grouping method as used for the positioning on the 

vertex is applied here at the DLPFC. The induced E-field 

distributions in the brain when the coils are positioned at the 

DLPFC of one of the head models is shown in Fig. 7, and just 

like the vertex location, it is observed that the coils exhibit 

unique E-field intensity. 

Comparisons were made of E-Max’s distributions in the brain 

between the coils positioned at the DLPFC and at the vertex. 

This comparison is shown in Fig. 8 for the different coil groups. 

There are no noticeable differences for coils in Group 1 whether 

the coil is positioned at the head’s vertex or DLPFC. For 

example, at both positions, the double cone coil generates 

relatively more variabilities among the head models. This 

observation means that the double cone coil is relatively more 

sensitive to the head models’ anatomical variations irrespective 

of the coil’s position.   Comparing the magnitude of the E-Max 

value of the different coils at the vertex and the DLPFC, the 

only observable difference is that of the figure-8 coil and the D-

B80 coil. The E-Max generated by the D-B80 coil is larger than 

the figure-8 coil when positioned at the vertex but is 

significantly smaller when positioned at the DLPFC.  It is also 

noticeable that data variabilities with the coils placed at the 

DLPFC are smaller than at the vertex. When the coils are placed 

at the DLPFC, the E-Max values are more resistant to the head 

models’ anatomical variations. For coils in Group 2, the 

Magstim 90 mm circular coil data is more extensive than the 

MagVenture Cool-125 coil, irrespective of coil location. There 

is only one coil in group 3 at the DLPFC; the Magstim double 

25 mm coil. Therefore, the E-Max in the brain with double 25 

mm coil has been compared between the two locations. The 

double 25 mm coil delivers E-fields with significantly larger 

intensities to the brain when positioned at the DLPFC. It is also 

less sensitive to anatomical variability, which is shown by the 

shorter interquartile range.  
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Fig. 5.  Comparison of the distribution of V-Half in the brain among the coils at the vertex location. 

 

 
Fig. 6. Longitudinal view of the 9 different coil configurations positioned over the DLPFC of one of the head models.

ii. V-Half brain 

The distributions of V-Half in the brain are compared among 

the coils when positioned at the DLPFC. Furthermore, the 

distributions between the two locations of the coils are 

compared.   For Group 1, it is evident from Fig. 9 that the spread 

of the data from the double cone coil and the D-B80 coil is 
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relatively more expansive, which is the same observation for E-

Max in Fig. 8. These two coils are less resistant to the 

anatomical variation in terms of both field intensity and focality. 

For coils in Group 1, Fig. 9 shows that the interquartile ranges 

when the coils are positioned at the vertex are more extensive 

at the DLPFC. A similar pattern is observed with the E-Max; 

that is, both E-Max and V-Half are sensitive to the anatomical 

variations when the coils are positioned at the vertex. For coils 

in Group 2, the relationship between the 90 mm circular coil 

and Cool-125 coil is irrespective of location. However, the data 

exhibit a narrow spread when the coils are positioned at the 

DLPFC. For the coil in Group 3, the V-Half values with 

Magstim double 25 mm coil also have a narrow spread. 

 
Fig. 7. Distribution of E-Field in the gray matter for each coil positioned at the DLPFC of one of the head models. 

 
Fig. 8. Comparison of E-Max in the brain among the coils positioned at the DLPFC and the vertex location. 
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Fig. 9.  Comparison of V-Half in the brain among the coils positioned at the DLPFC and the vertex location.

IV. CONCLUSION 

In this study, the authors discuss in detail the performance of 

16 different coils based on the induced E-field intensity and 

focality. The 16 different coils were divided into three groups 

based on their geometries. E-Max and V-Half comparisons 

were conducted with the different coils positioned at the vertex 

and the dorsolateral prefrontal cortex (DLPFC). Due to coil 

geometry, 9 of the 16 coils were positioned at the DLPFC. The 

E-Max defines the induced E-field intensity, while the V-Half 

defines the coils’ focality. Notably, the authors used 50 

heterogeneous realistic head models in the analysis to account 

for the effect of anatomical variations on the induced E-field.  

The results have provided information about the induced E-

field’s intensity from each coil and the brain’s area exposed to 

the E-field. The variabilities of E-Max or V-Half associated 

with each coil due to the different anatomical structures of 50 

head models have also been explored. The coils positioned at 

the DLPFC generate relatively high field strengths from the 

study than when placed at the vertex. The field strengths and 

focality are also less sensitive to anatomical variations at the 

DLPFC.  

Coils in Group 1 (double windings) exhibit improved focality 

compared with coils in Group 2 (single winding). However, this 

result is not surprising since coils with double windings are 

designed to achieve more focal stimulation. 

This study provides a basis for coil choice for TMS treatment. 

In the future, more studies will be conducted to estimate the 

penetration depth and field decay rate from each coil. 
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