10-2008

Onset of $\pi(0)$ Suppression Studied in Cu plus Cu Collisions at root $s(\text{NN})=22.4, 62.4, \text{ and } 200 \text{ GeV}$

Andrew Adare
University of Colorado, Boulder

Nathan C. Grau
Iowa State University

John C. Hill
Iowa State University, jhill@iastate.edu

Todd Kempel
Iowa State University, todd.kempel@gmail.com

John G. Lajoie
Iowa State University, lajoie@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs

Part of the [Elementary Particles and Fields and String Theory Commons](http://lib.dr.iastate.edu/physastro_pubs/303)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/303. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Onset of $\pi(0)$ Suppression Studied in Cu plus Cu Collisions at root $s(\text{NN})=22.4$, 62.4, and 200 GeV

Abstract
Neutral pion transverse momentum ($p(T)$) spectra at midrapidity ($|y|$ less than or similar to 0.35) were measured in Cu + Cu collisions at root $s(\text{NN}) = 22.4$, 62.4, and 200 GeV. Relative to $\pi(0)$ yields in $p + p$ collisions scaled by the number of inelastic nucleon-nucleon collisions (N_{coll}) the $\pi(0)$ yields for $p(T)$ greater than or similar to 2 GeV/c in central Cu + Cu collisions are suppressed at 62.4 and 200 GeV whereas an enhancement is observed at 22.4 GeV. A comparison with a jet-quenching model suggests that final state parton energy loss dominates in central Cu + Cu collisions at 62.4 and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

Disciplines
Elementary Particles and Fields and String Theory | Physics

Comments

Authors
Andrew Adare, Nathan C. Grau, John C. Hill, Todd Kempel, John G. Lajoie, Alexandre Lebedev, Craig Ogilvie, H. Pei, Marzia Rosati, Alexey Yu. Semenov, S. Skutnik, Carla Vale, Feng Wei, et al., and PHENIX Collaboration

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/physastro_pubs/303
Onset of π^0 Suppression Studied in Cu + Cu Collisions at $\sqrt{s_{NN}} = 22.4, 62.4,$ and 200 GeV

PHENIX Collaboration

1Abilene Christian University, Abilene, Texas 79699, USA
2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3Department of Physics, Banaras Hindu University, Varanasi 221005, India
4Bhabha Atomic Research Centre, Bombay 400 085, India
5Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
8University of California–Riverside, Riverside, California 92521, USA
9Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic
10China Institute of Atomic Energy (CIAE), Beijing, People’s Republic of China
11Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
12University of Colorado, Boulder, Colorado 80309, USA
13Columbia University, New York, New York 10027, USA and Nevis Laboratories, Irvington, New York 10533, USA
14Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
15Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
16Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
17ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary
18Florida Institute of Technology, Melbourne, Florida 32901, USA
19Florida State University, Tallahassee, Florida 32306, USA
20Georgia State University, Atlanta, Georgia 30303, USA
21Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
22IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
23University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
24Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
25Iowa State University, Ames, Iowa 50011, USA
26Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
27KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
28KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, PO Box 49, Budapest, Hungary
29Korea University, Seoul, 136-701, Korea
30Russian Research Center “Kurchatov Institute,” Moscow, Russia
31Kyoto University, Kyoto 606-8502, Japan
32Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
33Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
35LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubière Cedex, France
36Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
37Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
38Institut für Kernphysik, University of Muenster, D-48149 Muenster, Germany
39Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
40Myongji University, Yongin, Kyonggido 449-728, Korea
41Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
42University of New Mexico, Albuquerque, New Mexico 87131, USA
43New Mexico State University, Las Cruces, New Mexico 88003, USA
44Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
45IPN-Orsay, Université Paris-Sud, CNRS-IN2P3, Bp 1, F-91406, Orsay, France
46Peking University, Beijing, People’s Republic of China
47PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
48RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
49RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

162301-2
Neutral pion transverse momentum (p_T) spectra at midrapidity ($|y| \approx 0.35$) were measured in Cu + Cu collisions at $\sqrt{s_{NN}} = 22.4$, 62.4, and 200 GeV. Relative to π^0 yields in $p + p$ collisions scaled by the number of inelastic nucleon-nucleon collisions (N_{coll}) the π^0 yields for $p_T \approx 2$ GeV/c in central Cu + Cu collisions are suppressed at 62.4 and 200 GeV whereas an enhancement is observed at 22.4 GeV. A comparison with a jet-quenching model suggests that final state parton energy loss dominates in central Cu + Cu collisions at 62.4 and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

PACS numbers: 25.75.Dw
\[\Delta \varphi = 22.5^\circ \] in azimuth. Owing to the PbSc (PbGl) granularity of \(\Delta \eta \times \Delta \varphi = 0.011 \times 0.011 \) (0.008 \times 0.008) the probability that the two photon showers from a \(\pi^0 \) decay result in partially overlapping clusters is negligible up to a \(\pi^0 p_T \) of 12 GeV/c (15 GeV/c). The energy calibration of the EMCal was corroborated by the position of the \(\pi^0 \) invariant mass peak, the energy deposited by minimum ionizing charged particles traversing the EMCal (PbSc), and the correlation between the measured momenta of electron and positron tracks identified by the ring-imaging Cherenkov detector and the associated energy deposited in the EMCal. These studies showed that the accuracy of the energy measurement was better than 1.5%.

The total number of analyzed Cu + Cu events for the three energies is shown in Table I. The minimum bias (MB) trigger for all reaction systems was provided by beam-beam counters (BBCs) located at \(3.0 \leq |\eta| \leq 3.9 \). The reaction vertex along the beam axis, determined from the arrival time differences in the BBCs, was required to be in the range \(|z| \leq 30 \) cm. An additional high-\(p_T \) trigger was employed in Cu + Cu at \(\sqrt{s_{NN}} = 200 \) GeV. This trigger was based on the analog energy signal measured in overlapping 4 \times 4 towers of the EMCal in coincidence with the MB trigger condition. It reached an efficiency plateau for photon energies \(E \geq 4 \) GeV.

The centrality selection in Cu + Cu at \(\sqrt{s_{NN}} = 200 \) GeV and \(\sqrt{s_{NN}} \) = 62 GeV was based on the charge signal of the BBCs which is proportional to the charged-particle multiplicity. The BBC trigger efficiency \(\varepsilon_{\text{trig}} \) for these systems was determined with the aid of the HIJING event generator and a full GEANT simulation of the BBC response (see Table I). At \(\sqrt{s_{NN}} = 22.4 \) GeV centrality classes were defined based on the charged-particle multiplicity \(N_{\text{PC1}} \) measured with the pad chamber (PC1) detector \((|\eta| < 0.35) \). The measured \(N_{\text{PC1}} \) distribution was accurately reproduced in a Glauber Monte Carlo calculation [18] and centrality classes were determined by identical cuts on the measured and simulated PC1 multiplicities. In the Glauber calculation \(N_{\text{PC1}} \) was assumed to scale with \(N_{\text{part}} \) and multiplicity fluctuations were described with a negative binomial distribution. Varying \(\alpha \) and the negative binomial distribution parameters, the measured \(N_{\text{PC1}} \) distribution could be reproduced with \(\varepsilon_{\text{trig}} \) values between 0.75 and 0.90. Possible autocorrelations between \(N_{\text{PC1}} \) and the \(\pi^0 \) yield resulting from measuring these quantities in the same pseudorapidity range were studied with HIJING and found to be negligible. Results of the Glauber calculations for \(\sqrt{s_{NN}} = 22.4, 62.4, \) and 200 GeV are shown in Table II.

Neutral pion yields were measured on a statistical basis by calculating the invariant mass of all photon pairs in a given event and counting those within the \(\pi^0 \) mass range. The background of combinatorial pairs was calculated by pairing photon hits from different events. Only photon pairs with an energy asymmetry \(|E_1 - E_2|/(E_1 + E_2) < 0.7 \) were accepted. The raw \(\pi^0 \) yields were corrected for the geometrical acceptance and reconstruction efficiency. The latter takes into account the loss of \(\pi^0 \)’s due to photon identification cuts, the energy asymmetry cut, inactive detector areas, and photon conversions. Moreover, it corrects the distortion of the \(\pi^0 \) spectrum which results from the finite energy resolution in conjunction with the steeply falling spectra and shower overlap effects. The reconstruction efficiency was determined in a Monte Carlo simulation and is typically on the order of \(\varepsilon_{\pi^0} \simeq 0.7–0.8 \). For Cu + Cu at \(\sqrt{s_{NN}} = 200 \) GeV the transition between the minimum bias and the high-\(p_T \) sample occurs at \(p_T = 8 \) GeV/c. The final spectra were calculated as the weighted average of the PbSc and PbGl results, which agree within 15%, a deviation well covered by the uncertainties.

The main systematic uncertainties of the \(\pi^0 \) spectra result from the \(\pi^0 \) peak extraction, the reconstruction efficiency, and the EMCal energy calibration. For \(p_T \geq 2 \) GeV/c the peak extraction uncertainty is \(\sim 4\% \) for all systems, approximately independent of \(p_T \). The uncertainty in the reconstruction efficiency was estimated to be \(\sim 15\% \) for the three Cu + Cu analyses. The uncertainty in the EMCal energy scale of 1.5% translates into an uncer-

| Table I. Cu + Cu data sets presented with the number of analyzed events. For the data taken with the high-\(p_T \) trigger, the number of equivalent minimum bias events is given. At 22.4 GeV the given \(\varepsilon_{\text{trig}} \) range indicates the uncertainty. |

<table>
<thead>
<tr>
<th>(\sqrt{s_{NN}}) (GeV)</th>
<th>(\varepsilon_{\text{trig}})</th>
<th>(N_{\text{MB}})</th>
<th>(N_{\text{high-}\ p_T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4</td>
<td>75%–90%</td>
<td>5.8 \times 10^6</td>
<td>\cdots</td>
</tr>
<tr>
<td>62.4</td>
<td>(88 \pm 4)%</td>
<td>192 \times 10^6</td>
<td>\cdots</td>
</tr>
<tr>
<td>200</td>
<td>(94 \pm 2)%</td>
<td>794 \times 10^6</td>
<td>15.5 \times 10^6 (4720 \times 10^6)</td>
</tr>
</tbody>
</table>

| Table II. Glauber Monte Carlo calculations for Cu + Cu collisions at 22.4, 62.4, and 200 GeV using inelastic cross sections of 32.3, 35.6, and 42 mb, respectively. The \(N_{\text{coll}} \) systematic uncertainty at 62.4 and 200 GeV is \(\sim 12\% \), almost independent of \(N_{\text{coll}} \). At 22.4 GeV the relative uncertainty of \(N_{\text{coll}} \) can be parametrized as \(0.094 + 0.173e^{-0.0272N_{\text{coll}}} \). |

<table>
<thead>
<tr>
<th>(p_T) (GeV)</th>
<th>(\langle N_{\text{pan}} \rangle)</th>
<th>(\langle N_{\text{coll}} \rangle)</th>
<th>(\langle N_{\text{pan}} \rangle / \langle N_{\text{coll}} \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%–10%</td>
<td>92.2</td>
<td>140.7</td>
<td>93.3</td>
</tr>
<tr>
<td>10%–20%</td>
<td>67.8</td>
<td>93.3</td>
<td>71.1</td>
</tr>
<tr>
<td>20%–30%</td>
<td>48.3</td>
<td>59.7</td>
<td>51.3</td>
</tr>
<tr>
<td>30%–40%</td>
<td>34.1</td>
<td>38.0</td>
<td>36.2</td>
</tr>
<tr>
<td>40%–50%</td>
<td>23.1</td>
<td>22.9</td>
<td>24.9</td>
</tr>
<tr>
<td>50%–60%</td>
<td>15.5</td>
<td>13.9</td>
<td>16.1</td>
</tr>
<tr>
<td>60%–70%</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>70%–80%</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>80%–94%</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>60%–88%</td>
<td>\cdots</td>
<td>7.0</td>
<td>5.5</td>
</tr>
</tbody>
</table>
tainty in the yields that increases from ~8% at \(p_T = 3 \text{ GeV/c} \) to 15% at \(p_T = 6 \text{ GeV/c} \). The part of the spectra in Cu + Cu at 200 GeV measured with the high-\(p_T \) trigger is subject to an additional uncertainty of 10% related to the trigger efficiency.

PHENIX has not yet acquired a \(p+p \) data set at \(\sqrt{s} = 22.4 \text{ GeV} \). In [16] the world’s data on charged and neutral pion production for 21.7 \(\leq \sqrt{s} \leq 23.8 \text{ GeV} \) were scaled to \(\sqrt{s} = 22.4 \text{ GeV} \) and fit with \(E d^3 \sigma \equiv A(1 + p_T/p_0)^m(1 - 2p_T/\sqrt{s})^n \) where \(A = 174.4 \text{ mb GeV}^{-2} \text{c}^3, p_0 = 2.59 \text{ GeV/c} \), \(n = -17.43, m = 6.15 \). The scaling correction was determined with a next-to-leading-order pQCD calculation. The correction is largest for \(\sqrt{s} = 23.8 \text{ GeV} \) and reduces these spectra by ~30%. The systematic uncertainty of the fit increases from ~12% at \(p_T = 1.5 \text{ GeV/c} \) to ~23% at \(p_T = 4.0 \text{ GeV/c} \) [16].

The \(\pi^0 \) \(p_T \) spectra for \(p+p \) and central Cu + Cu collisions (0%–10% of \(\sigma_{\text{inel}}^{\text{Cu+Cu}} \)) at \(\sqrt{s_{NN}} = 22.4, 62.4 \) [14], and 200 GeV [6] are shown in Figs. 1(a) and 1(b). At sufficiently high \(p_T \) where pion production in \(p+p \) collisions is dominated by fragmentation of jets, QCD predicts a scaling law \(\sqrt{s_{\text{coll}}(x_T,\sqrt{s})} E d^3 \sigma \equiv G(x_T) \) with a universal function \(G(x_T) \) where \(x_T = 2p_T/\sqrt{s} \) [19]. Figure 1(c) shows that such a scaling in \(x_T \) is indeed observed for \(p+p \) collisions at 22.4, 62.4, and 200 GeV, consistent with previous observations [20]. The \(x_T \) values at which the universal curve \(G(x_T) \) is reached indicate that particle production is dominated by hard processes for \(p_T \geq 2 \text{ GeV/c} \).

Nuclear effects on high-\(p_T \) \(\pi^0 \) production can be quantified with the nuclear modification factor

\[
R_{AA}(p_T) = \frac{1/N_{AA}^{\text{nn}} d^2 N_{AA}/dp_T dy}{(T_{AA}) d^2 \sigma_{pp}/dp_T dy},
\]

where \(\langle T_{AA} \rangle = \langle N_{\text{coll}} \rangle / \sigma_{pp}^{\text{inel}} \). Figure 2 shows \(R_{AA}(p_T) \) for the 0%–10% most central Cu + Cu collisions. The suppression at 62.4 GeV \((R_{AA} \approx 0.6 \) for \(p_T \geq 3 \text{ GeV/c} \)) and 200 GeV \((R_{AA} = 0.5–0.6 \) for \(p_T \geq 3 \text{ GeV/c} \)) is consistent with expectations from parton energy loss. The \(R_{AA} \) in Cu + Cu at 22.4 GeV is similar to the enhancement by a factor ~1.5 (at \(p_T = 3 \text{ GeV/c} \)) observed in \(p + W \) relative to \(p + \text{Be} \) collisions at \(\sqrt{s_{NN}} = 19.4 \) and 23.8 GeV [21]. For similar \(N_{\text{part}} \) values the \(R_{AA} \) in Cu + Cu at 22.4 GeV agrees with the \(R_{AA} \) in Pb + Pb collisions at 17.3 GeV [12].

For \(p_T \approx 3 \text{ GeV/c} \) the measured \(R_{AA} \) values at 62.4 and 200 GeV are consistent with a numerically evaluated parton energy-loss model described in [22,23]; see Fig. 2. This calculation takes into account shadowing from coherent final state interactions in nuclei [24], Cronin enhancement

FIG. 1. For \(\sqrt{s_{NN}} = 22.4, 62.4, \) and 200 GeV are plotted (a) invariant \(\pi^0 \) yields in central Cu + Cu collisions, (b) invariant \(\pi^0 \) cross sections in \(p + p \) collisions [14–16], and (c) the \(p + p \) data plotted as a function of \(x_T = 2p_T/\sqrt{s} \), which exhibit an approximate \(x_T \) scaling. The error bars represent the quadratic sum of the statistical and total systematic uncertainties.

FIG. 2. Measured \(\pi^0 \) \(R_{AA} \) are compared to a jet quenching calculation [22,23]. The error bars (here and in Fig. 3) represent the quadratic sum of the statistical and the point-to-point uncorrelated and correlated systematic uncertainties. For \(\sqrt{s_{NN}} = 22.4 \text{ GeV} \) the error bars also include the systematic error of the fit of the \(p + p \) spectra. The boxes around unity indicate uncertainties related to \((N_{\text{coll}}) \) and absolute normalization. The bands for the calculation correspond to the assumed range of the initial gluon density \(dN^g/dy \).
FIG. 3. The average R_{AA} in the interval $2.5 < p_T < 3.5$ GeV/c as a function of centrality for Cu + Cu collisions at $\sqrt{s_{NN}} = 22.4$, 62.4, and 200 GeV. The shaded bands represent jet-quenching calculations at three discrete centralities ($N_{\text{part}} \sim 10, 50, 100$) [22,23]. The boxes around unity represent the normalization and (N_{coll}) uncertainties for a typical N_{coll} uncertainty of 12%.

measured in central Cu + Cu at 22.4 GeV is consistent with Cronin enhancement alone but does not rule out parton energy-loss effects. These measurements provide a unique constraint for jet-quenching models and demonstrate that parton energy loss starts to prevail over the Cronin enhancement between $\sqrt{s_{NN}} = 22.4$ and 62.4 GeV.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We thank Ivan Vitev for providing the jet-quenching calculations. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science, NSF, and a sponsored research grant from Renaissance Technologies (U.S.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAFAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, U.S.-Hungary Fulbright, and U.S.-Israel BSF.

[25], initial state parton energy loss in cold nuclear matter [26], and final state parton energy loss in dense partonic matter [9,22,23]. The Cronin enhancement measured in $p + A$ collisions is described well by this model [25]. The initial gluon rapidity density dN_g/dy which characterizes the medium was not fit to the R_{AA} values, but instead was constrained by measured charged-particle multiplicities and the assumption of parton-hadron duality ($dN_g/dy = \kappa d\eta/dydN_{ch}/d\eta$ with $\kappa = 3/2 \pm 30\%$ and $d\eta/dy = 1.2$ at all energies) [22,23]. The average fractional energy losses $\Delta E/E$ for a quark (gluon) with $E = 6$ GeV corresponding to the dN_g/dy ranges in Fig. 2 are 0.13–0.19 (0.29–0.42), 0.16–0.20 (0.35–0.44), 0.20–0.28 (0.44–0.63) in central Cu + Cu collisions at 22.4, 62.4, and 200 GeV, respectively [23]. For Cu + Cu at $\sqrt{s_{NN}} = 22.4$ GeV the calculation is also shown without final state parton energy loss. The measurement is consistent with this calculation but does not rule out a scenario with parton energy loss.

Figure 3 shows that the π^0 suppression in the range $2.5 < p_T < 3.5$ GeV/c increases towards more central Cu + Cu collisions for $\sqrt{s_{NN}} = 62.4, 200$ GeV. On the other hand, R_{AA} at $\sqrt{s_{NN}} = 22.4$ GeV remains approximately constant as a function of N_{part}, suggesting either that the Cronin enhancement depends only weakly on centrality or that in this energy range parton energy loss is offset by the larger effect of Cronin enhancement.

In conclusion, high-p_T π^0 yields in central Cu + Cu collisions at 62.4 and 200 GeV are suppressed, suggesting that parton energy loss is significant, while at 22.4 GeV the π^0 yields for $p_T \approx 2$ GeV/c are not suppressed. The R_{AA}