Single-Crystal Permanent Magnets: Extraordinary Magnetic Behavior in the Ta-, Cu-, and Fe-Substituted CeCo 5 Systems

Tej N. Lamichhane
Michael T. Onyszczak
Olena Palasyuk
Saba Sharikadze
Tae-Hoon Kim

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/ameslab_manuscripts
Part of the Materials Science and Engineering Commons, and the Physics Commons
Single-Crystal Permanent Magnets: Extraordinary Magnetic Behavior in the Ta-, Cu-, and Fe-Substituted CeCo₅ Systems

Abstract
To reduce material and processing costs of commercial permanent magnets and to attempt to fill the empty niche of energy products, 10–20 MGOe, between low-flux (ferrites, alnico) and high-flux (Nd₂Fe₁₄B- and SmCo₅-type) magnets, we report the synthesis, structure, magnetic properties, and modeling of Ta-, Cu-, and Fe-substituted CeCo₅. Using a self-flux technique, we grow single crystals of Ce₁₅.₁Ta₁.₀Co₇₄.₄Cu₉.₅, Ce₁₆.₃Ta₀.₆Co₆₈.₉Cu₁₄.₂, Ce₁₅.₇Ta₀.₆Co₆₇.₈Cu₁₅.₉, Ce₁₆.₃Ta₀.₃Co₆₁.₇Cu₂₁.₇, and Ce₁₄.₃Ta₁.₀Co₆₂.₀Fe₁₂.₃Cu₁₀.₄. X-ray-diffraction analysis shows that these materials retain a CaCu₅ substructure and incorporate small amounts of Ta in the form of “dumbbells,” filling the 2e crystallographic sites within the one-dimensional hexagonal channel with the 1a Ce site, whereas Co, Cu, and Fe are statistically distributed among the 2c and 3g crystallographic sites. Scanning-electron-microscopy, energy-dispersive-x-ray-spectroscopy, and scanning-transmission-electron-microscopy examinations provide strong evidence of the single-phase nature of the as-grown crystals, even though they readily exhibit significant magnetic coercivities of approximately 1.6 kOe to approximately 1.8 kOe caused by Co-enriched, nanosized structural defects and faults that can serve as pinning sites. Heat treatments at 1040°C for 10 h and hardening at 400°C for 4 h lead to the formation of a so-called composite crystal with a bimodal microstructure that consists of a Ta-poor matrix and Ta-rich laminal precipitates. Formation of the composite crystal during the heat treatment creates a three-dimensional array of extended defects within a primarily single-grain single crystal, which greatly improves its magnetic characteristics. Possible causes for the formation of the composite crystal may be associated with Ta atoms leaving matrix interstices at lower temperatures and/or matrix degradation induced by decreased miscibility at lower temperatures. Fe strongly increases both the Curie temperature and magnetization of the system resulting, in (BH)max≈13MGOe at room temperature.

Disciplines
Materials Science and Engineering | Physics

Authors
Tej N. Lamichhane, Michael T. Onyszczak, Olena Palasyuk, Saba Sharikadze, Tae-Hoon Kim, Qisheng Lin, Matthew J. Kramer, R. W. McCallum, Aleksander L. Wysocki, Manh Cuong Nguyen, Vladimir P. Antropov, Tribhuwan Pandey, David Parker, Sergey L. Bud’ko, Paul C. Canfield, and Andriy Palasyuk
Single-Crystal Permanent Magnets: Extraordinary Magnetic Behavior in the Ta-, Cu-, and Fe-Substituted CeCo₅ Systems

Tej N. Lamichhane,1,2 Michael T. Onyszczak,2 Olena Palasyuk,1,3 Saba Sharikadze,2 Tae-Hoon Kim,1 Qisheng Lin,1 Matthew J. Kramer,1,3 R.W. McCallum,1 Aleksander L. Wysocki,1 Manh Cuong Nguyen,1 Vladimir P. Antropov,1 Tribhuwan Pandey,4 David Parker,4 Sergey L. Bud’ko,1,2 Paul C. Canfield,1,2 and Andriy Palasyuk1, *

1 The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA
2 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3 Department of Material Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
4 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 23 May 2018; revised manuscript received 23 November 2018; published 25 January 2019)

To reduce material and processing costs of commercial permanent magnets and to attempt to fill the empty niche of energy products, 10–20 MGOe, between low-flux (ferrites, alnico) and high-flux (Nd₂Fe₁₄B- and SmCo₅-type) magnets, we report the synthesis, structure, magnetic properties, and modeling of Ta-, Cu-, and Fe-substituted CeCo₅. Using a self-flux technique, we grow single crystals of Ce₁₅.₁Ta₁.₀Co₇₄.₄Cu₉.₅, Ce₁₆.₃Ta₀.₆Co₆₈.₉Cu₁₄.₂, Ce₁₅.₇Ta₀.₆Co₆₇.₈Cu₁₅.₉, Ce₁₆.₃Ta₀.₃Co₆₁.₇Cu₂₁.₇, and Ce₁₄.₃Ta₁.₀Co₆₂.₀Fe₁₂.₃Cu₁₀.₄. X-ray-diffraction analysis shows that these materials retain a CaCu₅ substructure and incorporate small amounts of Ta in the form of “dumbbells,” filling the 2c crystallographic sites within the one-dimensional hexagonal channel with the 1a Ce site, whereas Co, Cu, and Fe are statistically distributed among the 2c and 3g crystallographic sites. Scanning-electron-microscopy, energy-dispersive-x-ray-spectroscopy, and scanning-transmission-electron-microscopy examinations provide strong evidence of the single-phase nature of the as-grown crystals, even though they readily exhibit significant magnetic coercivities of approximately 1.6 kOe to approximately 1.8 kOe caused by Co-enriched, nanosized structural defects and faults that can serve as pinning sites. Heat treatments at 1040 °C for 10 h and hardening at 400 °C for 4 h lead to the formation of a so-called composite crystal with a bimodal microstructure that consists of a Ta-poor matrix and Ta-rich laminal precipitates. Formation of the composite crystal during the heat treatment creates a three-dimensional array of extended defects within a primarily single-grain single crystal, which greatly improves its magnetic characteristics. Possible causes for the formation of the composite crystal may be associated with Ta atoms leaving matrix interstices at lower temperatures and/or matrix degradation induced by decreased miscibility at lower temperatures. Fe strongly increases both the Curie temperature and magnetization of the system resulting, in (BH)ₘₐₓ ≈ 13 MGOe at room temperature.

DOI: 10.1103/PhysRevApplied.11.014052

I. INTRODUCTION

To find new economical alternatives to commercial, high-flux permanent magnets, we focus on the Ta-, Cu-, and Fe-substituted CeCo₅ system (CaCu₅-type structure), which, unlike typical commercial magnetic grades with critical rare earths (Nd, Sm, Dy, etc.), uses widely available and more-affordable Ce [1–3]. The incorporation of Ce, instead of critical elements, into magnets may significantly reduce the price and supply-chain dependence of commercial magnets. Despite the mixed Ce³⁺/Ce⁴⁺ valency problem, which is typically adverse for the magnetocrystalline anisotropy, recent experimental studies on the Nd₂Fe₁₄B (2:14:1) system showed that Ce substitutes can compete with commercial high-flux grades at lower material costs [4–7]. Similarly, studies on the Ce-containing SmCo₅ (1:5) and Sm₂Co₁₇ (2:17) systems showed that satisfactory cost-to-performance balances suitable for modern rare-earth criticalities and market demands are expected [8–11]. Therefore, we believe that Cu- and Fe-substituted CeCo₅ systems require a new and deeper examination [12–14]. After being understood and optimized, these Ce-based systems may compete on the levels of both material-processing cost and properties as so-called gap magnets, performing in the gap of magnetic energies, between 10 and 20 MGOe, which currently exists between the
rare-earth-free alnico and ferrite grades and the sintered 1:5 and 2:14:1 magnetic grades, which contain critical rare earths [15].

Despite previous extensive explorations, the intrinsic properties of the CeCo$_5$ system have not been fully or systematically established [13,14,16–36], and the metallurgy related to the magnetic pinning/coercivity mechanism is not fully understood. Although anisotropy characterization is best obtained from single crystals, single-crystal-growth reports in Cu- or Fe-substituted CeCo$_5$ systems are scarce and limited to several Bridgman-type attempts [21,22] for compositions of approximately CeCo$_{3.5}$Fe$_{0.5}$Cu [37].

In this paper we report the successful self-flux growth [38,39] of five representatives of Ta-, Cu-, and Fe-substituted CeCo$_5$ followed by characterization of their structural and magnetic properties. We study the phenomenon of pronounced magnetic coercivity in the “as-grown” crystals and its further development during heat treatment as illustrated in Fig. 1. Subgrain phase segregation creates the necessary conditions for magnetic domain pinning. We also discuss the possible ways to improve, manipulate, and control the system in an attempt to improve its magnetic characteristics in conjunction with first-principles density-functional-theory (DFT) calculations and multiscale modeling.

II. EXPERIMENTAL PROCEDURES

A. Synthesis

Single crystals are grown via the solution growth method [38,39]. The reaction metals [Ce (99.99%) and Cu (99.95%) from Ames Laboratory MPC and Co (99.95%) from Alfa Aesar] are placed into three-capped Ta containers [40] welded under an Ar atmosphere, which are then sealed into fused-silica tubes and placed in a high-temperature box furnace. The furnace is heated from near room temperature to 900 °C over 3 h, held at 900 °C for 3 h, heated to 1200 °C over 3 h, and held at 1200 °C for 10 h. The furnace is then cooled to 1070 °C over 75 h. At 1070 °C the excess flux is decanted by centrifugation [38,39]. Decanting occurs as the centrifuge accelerates from rest toward an 8500 revolutions/min set point. The exact temperature profile of the growths and pictures of the typical crystals are presented in Fig. 2.

B. Heat treatment

After growth, some single crystals undergo identical, two-stage heat treatments performed in a Dentsply Ceramico (Vulcan 3 series) multistage programmable furnace, which includes dwelling at 1040 °C for 10 h, then cooling at a rate of 10 °C/min to 400 °C, followed by dwelling at this temperature for the next 8 h with a subsequent furnace cool to room temperature. We based this schedule on literature reports [19,21,26–30]. Different Cu contents may require slightly different temperature and time parameters for the best final magnetic characteristics, but the optimization of the heat-treatment procedure is a subject of ongoing work.

C. Metallography and scanning-electron-microscopy–energy-dispersive-x-ray-spectroscopy analysis

Samples for metallographic examination are placed in approximately-1-in.-diameter epoxy-resin pucks and are

![Fig. 2. Temperature-time profile used for single-crystal growth and general appearance of self-flux-grown plate-like crystals of Ce$_{15.7}$Ta$_{0.6}$Co$_{0.7}$Cu$_{15.9}$ (III), Ce$_{16.3}$Ta$_{0.3}$Co$_{0.7}$Cu$_{21.7}$ (IV), and Ce$_{14.3}$Ta$_{1.0}$Co$_{2.0}$Fe$_{12.3}$Cu$_{10.4}$ (V) (for details see Table I).](image-url)
TABLE I. Composition of single crystals (with standard deviation) and their lattice parameters as grown (AG) and after the heat treatment (HT). The lattice parameters and corresponding errors are derived from the Rietveld fits.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EDS composition (at. %)</th>
<th>Lattice parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce</td>
<td>Ta</td>
</tr>
<tr>
<td>AG</td>
<td>HT</td>
<td>AG</td>
</tr>
<tr>
<td>I</td>
<td>15.1(1)</td>
<td>16.1(1)</td>
</tr>
<tr>
<td>II</td>
<td>16.3(1)</td>
<td>16.2(1)</td>
</tr>
<tr>
<td>III</td>
<td>15.7(1)</td>
<td>15.8(1)</td>
</tr>
<tr>
<td>IV</td>
<td>16.3(1)</td>
<td>16.5(1)</td>
</tr>
<tr>
<td>V</td>
<td>14.3(1)</td>
<td>13.9(1)</td>
</tr>
</tbody>
</table>

Heat treatment is as follows: 1040 °C (10 h) followed by cooling at 10 °C/min to 400 °C (8 h).

*Standard deviations for Ta range from 0.02 to 0.05 at. %.

Space group P6/mmm.

polished with various grits of silicon carbide followed by a glycol-based, fine, polycrystalline, diamond suspension. Platelike single crystals (Fig. 2) are mounted with their plates parallel to the polishing surface to allow characterization along planes perpendicular to the crystal [001] direction. Imaging studies of single-crystal samples are performed with an FEI Teneo field-emission scanning electron microscope. Their compositions are determined via energy-dispersive x-ray spectra obtained with an Oxford Instruments energy-dispersive-spectroscopy (EDS) and electron-backscatter-diffraction module averaging over three to five regions on their metallographically prepared surfaces (see Table I).

D. Transmission-electron-microscopy characterization

Cross sections from single-crystal Ce_{15.7}Ta_{0.6}Co_{67.8}Cu_{15.9} (III) are prepared with a dual-beam focused-ion-beam system (FEI Helios NanoLab G3 UC) with a lift-out approach. To reduce surface damage sustained during Ga-ion milling, the final thinning and cleaning steps are conducted with 5 and 2 kV for 5 min. The transmission-electron-microscopy (TEM) analysis is performed with a Titan Themis (FEI) probe Cs-corrected transmission electron microscope equipped with a Super-X EDS detector to characterize microstructure and elemental distribution.

E. Powder and single-crystal x-ray diffraction

Polycrystalline powders are obtained by our crushing the sample with an agate mortar and pestle. X-ray powder diffraction data are collected from the as-grown and heat-treated crystals. The measurements are performed with PANalytical X-Pert Pro (Co Kα radiation, $\lambda = 1.78897$ Å) and a Bruker D8 Advance (Cu Kα radiation, $\lambda = 1.54056$ Å) diffraction systems. Powdered samples are evenly dispersed on a zero-background Si holder with the aid of a small quantity of vacuum grease. Diffraction scans are taken in the $\theta/2\theta$ mode with the following parameters: 2θ region, 20°–110°; step scan, 0.02°; counting time per step, 60 s. The FullProf Suite program package [41] is used for Rietveld refinement of the crystal structures.

Single-crystal diffraction data are collected at room temperature with a Bruker SMART APEX II diffractometer (Mo Kα radiation) equipped with a CCD area detector. Four sets of 360 frames with 0.5° scans in ω and exposure times of 10–15 s per frame are collected. The reflection intensities are integrated with use of the subprogram SAINT in the SMART software package [42]. The space group is determined with the program XPREP and the SHELXTL 6.1 software package [43]. Empirical absorption corrections are made with the program SADABS [44]. Finally, each structure is solved by direct methods using SHELXTL 6.1 and refined by full-matrix least squares on F^2, with anisotropic thermal parameters and a secondary extinction parameter. The error bars for lattice-parameter determination by both powder and single-crystal x-ray-diffraction (XRD) methods come from the fits of corresponding data. However, it is anticipated that the instrumental error may be on the order of 0.005 Å. Detailed crystallographic information is presented in Supplemental Material [45].
F. Measurement of magnetic properties

Magnetic properties are measured with a vibrating-sample magnetometer in a cryogen-free VersaLab physical-property-measurement system (Quantum Design) with magnetic fields up to 3 T and temperatures in the 50–350 K range with use of the standard option and in the 300–1000 K range with use of the oven option. An alumina cement (Zircar) is used to hold the sample on the heater stick for the high-temperature measurements. The demagnetization factors are determined experimentally by the relation $H_{\text{int}} = H - NM$ [46,47].

III. STRUCTURE AND COMPOSITION ANALYSIS

The Ce$(Co_{1-x-y}Fe_xCu_y)_5$ system favors slightly Ce deficiency [21–24], and the appearance of transition-metal “dumbbells” may lead to structural transformations toward the 1:7 and 2:17 phases. Therefore, we use approximately 1:5 as the designation for the general description of our reported systems.

A. SEM-EDS examinations and composition analysis

The SEM backscattered-electron images of the as-grown crystals [Figs. 3(a)–3(c), upper panels] show the uniformity of their approximately (0001) polished surface (even at ×30,000 magnification), which suggests a single phase, although small inhomogeneities are shown in Fig. 6 (TEM). Elemental EDS analysis (Table I) shows the Ce:Co/Cu ratios are close to the 1:5 stoichiometry, with Cu content increasing from approximately 10 at. % to approximately 22 at. %, corresponding to 12%–26% Co/Cu substitution. With respect to Ce content, crystalline Ce$_{15.1}$Ta$_{1.0}$Co$_{74.4}$Cu$_{9.5}$ (I) and III contain 15–15.7 at. %, which is lower than the Ce content in Ce$_{16.3}$Ta$_{0.6}$Co$_{68.9}$Cu$_{14.2}$ (II) and Ce$_{16.3}$Ta$_{0.3}$Co$_{61.7}$Cu$_{21.7}$ (IV) and significantly lower than the approximately 16.7 at. % Ce content required for the exact 1:5 type stoichiometry. Also a minor presence of Ta (0.3–1 at. %) is detected in all five compounds. The Ta content appears to be correlated to the Cu content as seen in Table I. The presence of Ta is explained by the slight dissolution of the inner walls of the Ta reaction container and diffusion of Ta atoms into the liquid at high temperatures. Since no Ta precipitation or segregation is observed in the SEM-EDS analysis of the as-grown crystals, we believe Ta is being incorporated into the crystal structure either as interstices or as uniformly distributed nanoscale precipitates. However, the slight Ce depletion and the presence of Ta suggest the possibility of minor deviations from the classic CaCu$_5$-type crystal structure toward various channel disorders or “dumbbell” problems characterized elsewhere [48–50]. These deviations are accounted for in our structural models and refinements (Figs. 4 and 5).

The SEM backscattered-electron images taken from the (0001) surface of the heat-treated crystals [Figs. 3(a)–3(c), lower panels] show degradation of the single-phase crystal into a bimodal microstructure consisting of a darker matrix...

![FIG. 3. SEM backscattered-electron images of (a) Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III), (b) Ce$_{16.3}$Ta$_{0.3}$Co$_{61.7}$Cu$_{21.7}$ (IV), and (c) Ce$_{14.3}$Ta$_{1.0}$Co$_{62.0}$Fe$_{1.2}$Cu$_{10.4}$ (V) before (upper panels) and after (lower panels) heat treatment. All images are obtained at a magnification of ×5000 and 15 kV.](image-url)
and lighter laminas. These laminas follow the hexagonal symmetry of the original crystal, crossing each other at an angle of 60° or 120°. The thickness of the laminar features is approximately 0.05 to 0.1 μm, and their lengths range from approximately 1 to 10 μm. The distances between two laminas are approximately 2–3 μm. The elemental EDS analysis of the heat-treated material (Table I) indicates the segregation of Ta-rich phases into the laminar

![Image](image_url)

FIG. 5. Single-crystal refinement for Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III), Ce$_{16.3}$Ta$_{0.3}$Co$_{61.7}$Cu$_{21.7}$ (IV), and Ce$_{14.3}$Ta$_{1.0}$Co$_{62.0}$Fe$_{12.3}$Cu$_{10.4}$ (V): [110] views of (a) CaCu$_5$-type and (b) TbCu$_7$-type structures with and without Ta “dumbbells,” respectively, and (c)-(e) difference-electron-density maps of structure solutions without “dumbbells” (upper row) showing significant residual electron density peaks of approximately 3.5 e/\AA^3 to approximately 13.5 e/\AA^3 in 1D structural channels at $(0 0 z)$, with $z \approx 0.3$, and with “dumbbells” (lower row) with significantly smaller residuals.
features, whereas the matrix material becomes practically Ta-free in the Cu-richest crystal, IV.

B. X-ray analysis and crystal-structure determination

Powder and single-crystal x-ray analyses are performed to determine the structure of crystals of I, II, III, IV, and Ce$_{14.3}$Ta$_{1.0}$Co$_{62.0}$Fe$_{12.3}$Cu$_{10.4}$ (V). Rietveld fitting of the powder x-ray pattern taken from the as-grown, crushed, and thoroughly powdered single crystals of I–V shows that all Bragg reflections are well indexed within the CaCu$_5$-type structure (hP6, P6/mmm), providing a strong argument for the single-phase nature of the as-grown crystals in agreement with our SEM observations (Fig. 3). To address the EDS-observed Ta presence and Ce deficiency, especially in the as-grown crystals of I, III, and V (see Table I), we consider known structural derivatives of CaCu$_5$ [48]. These derivatives are typically observed in binary and ternary rare earth–transition metal systems near the approximately 1:5 and approximately 2:17 stoichiometries and result from the replacement of rare-earth atoms by pairs of transition-metal atoms. The CaCu$_5$ substructure can be retained if the replacement is fully random, as in TbCu$_5$ [51], but may be transformed into various superstructures, such as Th$_2$Zn$_{17}$ [52] and Th$_2$Ni$_{17}$ [53], if the substitution is ordered. A third possibility comes as a combination of ordered and disordered rare earth–“dumbbell” substitutions that are contained in a superstructure; for example, LuFe$_{0.5}$ [54] and PrFe$_{0.7}$ [55]. We try Rietveld refinements with structural models allowing the presence of Ta but the clear indexing of Bragg reflections within the parent, CaCu$_5$-type, 1:5 structure (Fig. 4) indicates a minor and random distribution of Ta.

We allow Ce/Ta or T/Ta (T = Co, Cu, Fe) statistical mixing on the 1a, 2c, and 3g sites with and without underoccupancy of Ce on the 1a site. The substitution of Ce atoms by T-T “dumbbells” is introduced into the model as an independent crystallographic 2e site (0 0 z) with $z \approx 0.3$. The last model represents a small departure from the CaCu$_5$ structure toward the closely related TbCu$_7$ structure with slight Ce/“dumbbell” substitution within the one-dimensional hexagonal channel (see Fig. 5). The Ce/Ta and T/Ta mixtures do not produce satisfactory fits, significantly increasing the residuals and showing unreasonable isotropic temperature parameters, whereas the “dumbbell” refinements are insensitive to small amounts of T-T (T = Ta, Co, Cu, and/or Fe) pairs and are comparable to those without any Ta and are proportional to the EDS-determined Co/Cu mixings on the 2c and 3g sites, suggesting minimal disorder. Although the present powder x-ray refinements do not clearly address Ta occupation, they clearly determine lattice parameters as well as demonstrate the phase content and purity of the material before and after the heat treatment. Data are presented in Figs. 4(a) and 4(b) (upper panels) for the crushed, as-grown crystals of III and IV. Phase analysis of powder x-ray patterns taken from crushed heat-treated crystals of III [Figs. 4(a) and 4(b), lower panels] reveals the clear presence of Ta-like impurities [Fm$\overline{3}$m, $a = 4.446(1)$ Å], confirming the EDS findings (Fig. 3), whereas in IV Ta is not detected in the x-ray pattern.

Single-crystal x-ray diffraction of the as-grown crystals shows poor quality of the crystals, suggesting crystal intergrowth, twinning, residual-stress, or stacking-fault effects. These defects are very apparent on Laue frames from numerous (more than ten) specimens of I in the form of strong streaking, doubling of the reflections, and sometimes the presence of the Debye rings. However, these effects diminished in II and are practically absent in III and IV, allowing structural characterization of the as-grown crystals of III–V (see Table II). Single-crystal structure solutions of III–V confirm their CaCu$_5$ substructure (see Tables II and III). However, disorder is detected within the 1D hexagonal channels, as seen in the residual-electron-density peaks of approximately 5.0 e/Å3, approximately 3.8 e/Å3, and approximately 13.2 e/Å3 at (0 0 z), $z \approx 0.295$, for III, IV, and V, respectively. Only by filling the 2e site with the heaviest and largest available pair, Ta-Ta, are we able to reach reasonable refinement. The R_1/wR_2 residuals dropped by 50%–70% in comparison with the solutions without Ta and showed minimal fluctuations of the residual electron density in the final fits. Figure 5 shows the differential Fourier maps for III–V with and without the “dumbbell” disorder. One significant deficiency of the solutions is the interatomic T-T distance of approximately 2.35 Å, which is typical for Co-Co, Co-Cu, and Co-Fe pairs but is extremely short for the Ta-Ta pair. However, the “dumbbell” configuration with large and heavy atoms similar to Ta is not unprecedented and was reported for the similar structure of CeFe$_{10}$Zr$_{0.8}$ (d$_{Ta-Ta}$ ≈ 2.65 Å) [56]. However, the stoichiometry of V shows significant deviation from the ideal 1:5 stoichiometry. The content of 1D channels (Ce plus the Ta-Ta pairs) does not reach the expected 16.7 at. %, meaning that some of the T atoms must participate in the channel disorder.

C. Transmission electron microscopy

Figure 6(a) shows a high-angle-annular-dark-field (HAADF) scanning-transmission-electron-microscope (STEM) image of as-grown III showing the overall microstructure. The entire region consists a single-crystal phase. Figure 6(b) shows an enlarged HAADF image that shows a dark-contrast line. It is the only feature that can be found in the entire scan area. Figure 6(c) shows a diffraction pattern taken from the region shown in Fig. 6(b) including the matrix and the dark line. It clearly shows the single-crystal 1:5 phase. It seems that the dark-line region has the same crystal structure and it is not a precipitate, which would have caused additional diffractions.
TABLE II. Single-crystal and refinement data for Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III), Ce$_{16.3}$Ta$_{0.3}$Co$_{61.7}$Cu$_{21.7}$ (IV), and Ce$_{14.3}$Ta$_{1.0}$Co$_{62.0}$Fe$_{12.3}$Cu$_{10.4}$ (V). The errors for the lattice parameters are derived from the crystal-structure solution.

<table>
<thead>
<tr>
<th></th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS composition</td>
<td>Ce${0.94}$Ta${0.04}$Co${4.06}$Cu${0.94}$</td>
<td>Ce${0.99}$Ta${0.00}$Co${3.70}$Cu${0.70}$</td>
<td>Ce${0.86}$Ta${0.06}$Co${3.72}$Fe${0.73}$Cu$_{0.62}$</td>
</tr>
<tr>
<td>Refined composition</td>
<td>Ce${0.98}$Ta${0.04}$Co${4.25}$Cu${0.75}$</td>
<td>Ce${0.99}$Ta${0.02}$Co${3.79}$Cu${1.21}$</td>
<td>Ce${0.94}$Ta${0.12}$Co${3.68}$Fe${0.72}$Cu$_{0.60}$</td>
</tr>
<tr>
<td>Formula mass (g)</td>
<td>442.68</td>
<td>442.57</td>
<td>449.52</td>
</tr>
<tr>
<td>Space group; Z</td>
<td>P6/mmm; 1</td>
<td>P6/mmm; 1</td>
<td>P6/mmm; 1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>4.946(1)</td>
<td>4.952(1)</td>
<td>4.928(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.038(1)</td>
<td>4.035(1)</td>
<td>4.073(1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>85.57(4)</td>
<td>85.70(5)</td>
<td>85.66(2)</td>
</tr>
<tr>
<td>Absorption coefficient μ (mm$^{-1}$; Mo Kα)</td>
<td>37.85</td>
<td>37.08</td>
<td>39.78</td>
</tr>
<tr>
<td>Reflections collected/R$_{int}$</td>
<td>1631/0.025</td>
<td>2002/0.042</td>
<td>1808/0.027</td>
</tr>
<tr>
<td>Independent data/restraints/parameters</td>
<td>79/0/12</td>
<td>109/0/13</td>
<td>91/0/11</td>
</tr>
<tr>
<td>Goodness of fit (F^2)</td>
<td>1.221</td>
<td>1.129</td>
<td>1.172</td>
</tr>
<tr>
<td>R_1/wR$_2$ ($I > 2\sigma(I)$)</td>
<td>0.018/0.041</td>
<td>0.021/0.048</td>
<td>0.030/0.063</td>
</tr>
<tr>
<td>R_1/wR$_2$ (all data)</td>
<td>0.021/0.041</td>
<td>0.025/0.046</td>
<td>0.031/0.063</td>
</tr>
<tr>
<td>Largest diffraction peak/hole (e/Å3)</td>
<td>0.80/$-$0.74</td>
<td>1.04/$-$0.99</td>
<td>1.91/$-$1.53</td>
</tr>
</tbody>
</table>

spots in Fig. 6(c). Figure 6(d) shows a high-resolution STEM image taken from the orange-boxed area in Fig. 6(b) under the [110] zone axis. The inset shows an enlarged atomic image with an atomic model of the hexagonal 1:5 phase. The bright dots and dark dots in the images correspond to atomic columns of the elements Ce and Co/Cu, respectively. Figure 6(e) shows an enlarged image of the blue-boxed area in Fig. 6(b), and a dark line in the single-crystal phase is shown clearly. Figure 6(f) shows an EDS elemental mapping of Fig. 6(e). The chemical contrast between the matrix and the dark line is observed. The EDS result shows the dark line is Co rich and Cu deficient.

Figure 7(a) shows a HAADF image of an annealed sample showing the overall microstructure. Many bright areas are observed unlike for the unannealed sample shown in Fig. 6. Figure 7(b) shows an enlarged image of the blue-boxed area in Fig. 7(a), and Fig. 7(c) shows the EDS elemental mapping corresponding to Fig. 7(b). The bright regions in Fig. 7(b) are Ta rich and are considered as Ta precipitates. Additionally, a few dark lines are observed in the Ta precipitate. The difference in the brightness of the precipitates is attributed to the difference in the thickness of each precipitate. Figure 7(d) shows an enlarged image of the orange-boxed area in Fig. 7(b), and Fig. 7(e) shows a diffraction pattern taken from Fig. 7(d) including the matrix and the Ta precipitates. Figure 7(d) shows the Ta precipitates coherently embedded by epitaxial precipitation and the corresponding diffraction pattern shows the epitaxial relationship between the matrix and the Ta precipitate. The orientation relation is observed as follows: (110) Ce-Co-Cu // (110) Ta; (002) Ce-Co-Cu // (110) Ta; and [110] Ce-Co-Cu // [001] Ta. Figure 7(f) shows a high-resolution STEM image taken from the matrix in Fig. 7(d) under the [110] zone axis. It is the same as that seen in

TABLE III. Atomic coordinates, equivalent isotropic displacement parameters (10^3 Å2), and site-occupancy factors (SOF) refined for Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III), Ce$_{16.3}$Ta$_{0.3}$Co$_{61.7}$Cu$_{21.7}$ (IV), and Ce$_{14.3}$Ta$_{1.0}$Co$_{62.0}$Fe$_{12.3}$Cu$_{10.4}$ (V).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Wyckoff position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq} (Å2)</th>
<th>SOF</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15(1)</td>
<td>0.977(2)</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16(1)</td>
<td>0.988(1)</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19(1)</td>
<td>0.936(3)</td>
<td>V</td>
</tr>
<tr>
<td>Ta</td>
<td>2e</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15(1)</td>
<td>0.280(6)</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.296(9)</td>
<td>16(1)</td>
<td>0.023(2)</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.292(4)</td>
<td>19(1)</td>
<td>0.012(1)</td>
<td>IV</td>
</tr>
<tr>
<td>M1a</td>
<td>2c</td>
<td>2/3</td>
<td>1/3</td>
<td>0</td>
<td>15(1)</td>
<td>0.046(3)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23(1)</td>
<td>0.23(7) Cu</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10(1)</td>
<td>0.25(6) Cu</td>
<td>III</td>
</tr>
<tr>
<td>M2a</td>
<td>3g</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>10(1)</td>
<td>0.25(5) Cu</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10(1)</td>
<td>0.24 Fe/0.20 Cu</td>
<td>V</td>
</tr>
</tbody>
</table>

aThe letter M stands for Co/Cu or Co/Fe/Cu mixed occupancy; 3g occupancy for V is fixed.
FIG. 6. (a) HAADF STEM image of as-grown Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III) showing the overall microstructure. (b) Enlarged HAADF image showing a dark-contrast line. (c) Diffraction pattern taken from the region shown in (b) including the matrix and the dark line. (d) High-resolution STEM image taken from the orange-boxed area in (b) under the [110] zone axis (ZA). The inset is an enlarged atomic image with an atomic model of the hexagonal 1:5 Ce/Co/Cu phase. The bright dots and dark dots in the images correspond to atomic columns of the elements Ce, and Co and Cu, respectively. (e) Enlarged image of the blue-boxed area in (b); the dark line in the single-crystal phase is shown clearly. (f) EDS elemental mapping of (e) clearly showing Co enrichment in the line; the small Co and Cu elemental maps in the insets are presented to contrast observation of Cu depletion in the same line.

Fig. 6(d). The inset shows an enlarged atomic image with an atomic model of the hexagonal 1:5 Ce/Co/Cu phase. The bright dots and dark dots in the images correspond to atomic columns of the elements Ce and Co/Cu, respectively. Figure 8 shows high-resolution HAADF images of the interface between the matrix and the Ta precipitate taken from red-boxed area in Fig. 7(d) and the corresponding EDS-elemental-mapping results [Figs. 7(b)–7(f)]. The dashed white lines indicate the same position in each image. Although a Cu-rich and Co-deficient region is

FIG. 7. (a) HAADF image of heat-treated Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III) showing the overall microstructure. (b) Enlarged image of the blue-boxed area in (a). (c) EDS elemental mapping corresponding to (b). The bright regions are Ta rich and considered as Ta precipitate. (d) Enlarged image of the orange-boxed area in (b). (e) Diffraction pattern taken from (d) including the matrix and the Ta precipitate. (f) High-resolution STEM image obtained from the matrix in (d) under the [110] zone axis (ZA).
observed near the precipitate [Fig. 7(c)], there is also a Co-rich, Ce-rich, and Cu-deficient interface between the matrix and the Ta precipitate. The dark lines in the Ta precipitate are Co rich. From the EDS maps at the interface and near the precipitate, it is assumed that Co infiltrated into the precipitate [Fig. 7(d)], and Co became deficient near the precipitate with relative Co richness as a result. As discussed below, the high-resolution-TEM results for both as-grown and heat-treated samples of crystalline III will be used to elucidate the pinning mechanism that leads to significant coercivities in the crystals.

IV. MAGNETIC PROPERTIES

A. As-grown crystals: Curie temperature, magnetocrystalline anisotropy field, and energy density

Figure 9 presents the Curie temperatures for I–V as inferred from the peak in dM/dT shown in the inset. The Curie temperatures T_C estimated from the minimum in the derivative correspond closely to the Curie temperatures derived via the more-accurate Arrot-plot method (see below). T_C decreases rapidly with increasing Cu content for Fe-free I–IV. This is consistent with an early report [36] and indicates weakening in the ferromagnetic exchange interactions within the Co sublattice due to the introduction of nonmagnetic Cu. In contrast, the crystal of Fe-doped V shows a remarkable increase of T_C, increasing...
by more than 150 K to approximately 820 K, a value that is significantly higher than the Curie temperature (653 K) of the parent CeCo$_5$ [57]. Using band-structure analysis, we find that Fe doping of CeCo$_5$ and Ce(Co, Cu)$_5$ increases the ordering energy $\Delta E = E_{\text{nonmagnetic}} - E_{\text{ferromagnetic}}$ as well as the total magnetic moment of the systems (see Sec. V). This leads to the remarkable increase of the Curie temperature and saturation magnetization.

To more formally determine T_C, we perform an Arrott-plot analysis for III using isotherms between 460 to 500 K (Fig. 10). The Curie temperature for III is estimated to be approximately 480 K since the isotherm at that temperature is closest to a straight line and passes through the origin. In Fig. 11 we show representative $M(H)$ isotherms for V. In the inset we plot the spontaneous magnetization for each temperature inferred from the extrapolation of the linear region of $M(H)$ back to $H = 0$. As can be seen, these data suggest $T_C \sim 820$ K (estimated by generalized Bloch-law fitting of spontaneous magnetization), in good agreement with Fig. 9.

Figure 12(a) shows the magnetocrystalline anisotropy field, H_a, at room temperature for as-grown crystals of I–V; the low-temperature estimations of H_a are done for crystals of III and V and are presented in Fig. 12(b). The anisotropy field is estimated by the high-field, linear extrapolation of the field-dependent moment along the easy [001] and hard ($H \perp [001]$) axes [22,47]. The room-temperature H_a for the Fe-free, as-grown crystals of I–IV

FIG. 10. Arrott plot for Ce$_{15.7}$Ta$_{0.6}$Co$_{67.8}$Cu$_{15.9}$ (III) with isotherms taken at 5.0-K intervals as indicated. The Curie temperature is approximately 480 K as inferred from the plot since the isotherm is closest to linear and passes through the origin.
exhibits a maximum anisotropy field of approximately 118 kOe in crystalline II. The addition of Fe has a detrimental influence on the magnetocrystalline anisotropy (in Fe-doped V the anisotropy field drops to approximately 65 kOe [see the inset in Fig. 12(a)], but the spontaneous magnetization increases by approximately 30% compared with crystals with similar Cu contents). Low-temperature measurements estimate the spontaneous magnetization for crystals of III and V to be approximately 3.7 \(\mu_B \) per formula unit and approximately 6.8 \(\mu_B \) per formula unit, respectively.

The temperature-dependent magnetocrystalline anisotropy energy density is measured by the Sucksmith-Thompson method [47, 58, 59] by use of the hard-axis magnetization isotherms for crystals of III and V (Fig. 13). In this method, the \(y \) intercept \((I) \) of the \(H_{int}/M_\perp \)-versus-\(M_\perp^2 \) curve is used to determine \(K_1 \) as \(I = 2K_1/M_S^2 \), where \(M_\perp \) is the hard-axis magnetization and \(M_S \) is the saturation magnetization. The corresponding uncertainty in measurement is determined with the formula \(\Delta K_1 = K_1(\Delta I/I + 2\Delta M_\perp/M_S^2) \) [60]. The uncertainty \(\Delta I \) is determined from the uncertainty of the linear fit. \(\Delta M_\perp \) is determined from the difference between the maximum possible upper bound of the saturation magnetization [obtained as the \(y \) intercept of \(M \) versus \(1/H \)] and lower bound of the saturation magnetization [obtained as the linear fit of \(M(H) \) data as shown in the 50-K magnetization data in Fig. 11] for each temperature.

The as-grown single crystals show magnetic hysteresis when measured along the easy axis of magnetization [001]. For example, crystalline III exhibited a hysteresis (see Fig. 1) that reached \(H_c \approx 1.6 \) kOe and \(B_r \approx 4.2 \) kG, \(M_s \approx 4.2 \) kG, and \((BH)_{\text{max}} \approx 3.5 \) MGOe (Fig. 14), which is comparable to most of anisotropic sintered alnico grades [61]. This is remarkable considering the common belief that the appearance of the coercivity is a result of the extrinsic properties (e.g., development of proper microstructure for strong magnetic domain pinning), and this is generally not associated with a single-phase single crystal as determined by the SEM and XRD examinations (Figs. 3 and 4), which did not reveal any elemental precipitations, segregations, or microstructure on their corresponding length scales.

The detailed high-resolution STEM examination of as-grown III (Fig. 6) shows the basic uniformity and integrity with small Co-enriched and Cu-depleted regions/stripes coherently dispersed throughout the matrix. Unfortunately, the size of these stripes does not allow EDS composition determination or structural analysis. However, on the basis of previous reports [21–23], we assume that these are embryonic structural defects caused by stacking faults compensating for various channel disorders within the material. They may also be the nucleation sites for the decomposition and/or miscibility gap as suggested in previous literature [36].

B. Heat-treated crystals: coercivity, pinning, and magnetic energy

After heat treatment, crystals of I–IV show significantly increased magnetic hysteresis with a monotonic increase of coercivity, \(H_c \), and a linear decrease of spontaneous magnetization, \(M_s \), with increasing Cu content (Fig. 15). For example, the magnetic characteristics of III change as follows: significant increase of \(H_c \) from approximately 1.6 kOe to approximately 6.3 kOe with an increase of \(B_r \) (\(M_s \)) from approximately 4.2 (4.2) kG to approximately 5.3 (5.7) kG, resulting in \((BH)_{\text{max}} \) of approximately 7.8 MGOe [Fig. 16]. In addition to the conspicuous increase in magnetic hysteresis, there is a noteworthy increase in saturation magnetization of the heat-treated samples (Fig. 1 and upper inset in Fig. 15). These increases in magnetic hysteresis and saturation magnetization correlate with the
appearance of the Ta-rich precipitates (see SEM images in Fig. 3). The STEM analysis confirms that these are 90%–95%-pure rectangular blocks of Ta (according to the diffraction patterns and elemental analysis) and their interfaces are coherent with the matrix material. However, high-magnification TEM EDS maps [Figs. 7(c) and 8] reveal a Cu-deficient and Co-enriched layer at the interface of the precipitates and the matrix, and Co is detected in precipitates as lines, which somewhat resemble observations of rare Co-enriched and Cu-depleted lines in the STEM examination of as-grown crystals (Fig. 6). These results suggest that the high coercivity may be explained by the Ta-rich precipitates serving as pinning sites and can be described with a simple domain-pinning model. Typically, the coercive force is inversely proportional to the saturation magnetization for a particular magnetocrystalline energy ($H_c = \sqrt{AK/M_s l}$, where A is the exchange constant, K is the magnetocrystalline anisotropy, M_s is the saturation magnetization, and l is the distance between the precipitates) [21–23]. According to the equation, by increasing the amount of pinning precipitates, we decrease the volume fraction of the matrix material and magnetization M_s of the system. Also, the distances l between the precipitates become shorter. As a result, the coercivity H_c increases. Thus, H_c of our crystals should be directly proportional to the Ta content. However, we observe the inverse proportionality: the total Ta content monotonically decreases in crystals of I–IV (Table I), whereas the coercivity monotonically increases (Fig. 15).

In contrast, the H_c increase correlates directly with increasing Cu content (Fig. 15, see both insets), also following the proposed precipitation coercivity mechanism (see the equation above). Pinning of magnetic domains should occur on the precipitates, the amount of which is regulated by Cu content rather than Ta content. However, we do not observe precipitates that are clearly associated with Cu, except for Ta-depleted regions observed in STEM experiments [Figs. 7(c) and 8].

Therefore, we consider the Ta-rich precipitates as a secondary effect, which decorates the extended three-dimensional (3D) defects and structural imperfections that originate from Cu-depleted and Co-enriched lines observed in the as-grown crystals (Fig. 6) and consequently develop into the regions between Ta-rich precipitates and the matrix in the thermally aged crystals [Figs. 7(c) and 8]. The amount of these imperfections must increase with increasing Cu content and lead to increased coercivity.

According to the literature, coercivity in Cu- and Fe-substituted CeCo$_5$ is caused by fine precipitates that originate from partial matrix decomposition similar to eutectoid decomposition observed in pure CeCo$_5$ [21–23], whereas in Cu-substituted CeCo$_5$ the pronounced coercivity is related to a miscibility gap with a critical temperature close to 800 °C [36]. Both observations support the idea of intra-granular domain pinning on extended 3D defects created as a result of matrix phase transformations during the heat treatment (hardening) of the samples. In the first case, the precipitated 2:17 phase, being more anisotropic than the matrix, serves as a pinning site and contributes slightly to the increase in magnetization. In the second case, because of decreased miscibility at lower temperatures, two phases with similar Cu:Co ratios and different Curie temperatures exist. The Cu-poor phase supposedly serves as a pinning precipitate with increased magnetization, and the Cu-richer phase contributes to the higher-anisotropy matrix. One indirect confirmation of such a mechanism is observed in the Fe-free crystals of I–IV, which show atypical and
increasing magnetization after the heat treatment (see the left inset in Fig. 15). This suggests a change of the magnetic nature of the matrix. However, this must occur with a minimal composition change as no significant difference in compositions is detected before and after the heat treatment (Table I). With the addition of Fe, the decomposition process becomes complicated, and besides the miscibility gap, the precipitation of the very stable 2:17 Ce-Cu-Fe phase is possible [21–23]. This, however, is not clearly confirmed in the Fe-doped crystal of V. Current SEM-EDS examinations of V show a microstructure similar to that of the Fe-free crystals of III and IV (Fig. 3). After the heat treatment, the 2:17 phase is not observed.

Another explanation for the pronounced increase in magnetization after the heat treatment may be associated with removal of Ta from the matrix material. The increase in magnetization is most pronounced in IV with the greatest removal of Ta after the heat treatment (see Table I). One possible explanation for the surprisingly large impact of the removal of Ta on the magnetic properties of our CeCo5-based material is as follows. Previous theoretical work [62] found that CeCo5 is surprisingly near to a nonmagnetic state, on the basis of Stoner physics, despite its substantial Curie point. We suggest that Ta may locally drive the system toward a nonmagnetic or less-magnetic state, so its removal may restore or enhance magnetic character locally. Further theoretical work is clearly needed to address this notion, and it may well be difficult to account quantitatively for the observed magnitude of the behavior—approximately 25% increase in magnetization for the removal of 0.3 at. % Ta. Nevertheless, systems near a magnetic instability can exhibit a disproportionate response to small impurity concentrations, as in paramagnetic Fe impurities having huge effective moments in a Pd-Rh matrix [63], and we suggest the possibility of similar behavior here.

V. THEORETICAL CALCULATIONS

There are two main questions associated with the extraordinary magnetic nature of Cu- and Fe-substituted CeCo5: (i) strong increase of both the Curie temperature and the magnetization caused by the addition of Fe and (ii) the high coercivity that is driven primarily by a Cu-regulated intragranular pinning mechanism rather than the more-typical strong magnetocrystalline anisotropy. We address these in the following subsections through theoretical calculations and multiscale modeling.

A. Increase of Curie temperature in Fe-doped samples

To understand the observed magnetic behavior and increase in the Curie point with Fe substitution, first-principles calculations for CeCo5 and CeCo5Cu are performed with the density-functional theory as implemented in the WIEN2K code [64]. Calculations are performed with the experimental lattice parameters. In this structure all internal coordinates are symmetry dictated, so no internal-coordinate optimization is performed. The linear-augmented-plane-wave (LAPW) sphere radii are set to 2.4 bohr for Ce and 2.0 bohr for Cu and Co. In addition, to ensure proper convergence of the basis set, $R_{\text{max}} = 9.0$ is used. Here R and k_{max} are the smallest LAPW sphere radius and the largest interstitial plane-wave cut-off, respectively. All the calculations are performed by our assuming a collinear spin arrangement. The magnetic anisotropy energy (MAE) is obtained by our calculating the total energies of the system with spin-orbit coupling as $K = E_{[100]} - E_{[001]}$, where $E_{[110]}$ and $E_{[001]}$ are the total energies for the magnetization oriented along the a and c directions, respectively. For these MAE calculations the convergence with respect to the number of K points is carefully checked. All the MAE results reported in this section correspond to 2000 K points in the full Brillouin zone. To correctly treat the strong interactions between the Ce f electrons, the Hubbard U correction is applied, with $U_{\text{Ce}} = 3.0$ eV. For the DFT-with-the-Hubbard-U-parameter (DFT+U) calculations, the standard self-interaction-correction [65,66] method is used.

For the modeling of CeCo5Cu, Cu is substituted in the Co hexagonal ring (2c Co site), as our calculations find this location for Cu to be energetically favorable (relative to the 3g site) by some 30 meV/Cu. Fe alloying in CeCo5Cu is realized within the virtual-crystal approximation. The calculated magnetic behavior for CeCo5 is in good agreement with the experimental measurements with a total magnetization of 6.8 μ_B per unit cell. The calculated spin moment on each 2c Co atom is 1.42 μ_B, whereas the moment on 3g Co atoms is 1.5 μ_B. This is accompanied by an orbital moment of approximately 0.13 μ_B. The calculated Cr spin moment is $-0.71 \mu_B$. On Cu substitution (for CeCo5Cu) the moment on the Co atoms is reduced to 1.18 μ_B on the 2c Co site and to 1.40 μ_B on the 3g Co site. However, on Fe alloying in CeCo4Cu (CeCo4–xFe,Cu), the total magnetization in the unit cell increases linearly with Fe doping as shown in Fig. 17(a). The calculated MAE of approximately 3.17 MJ/m3 without inclusion of the Hubbard U parameter ($U = 0$) is rather small when compared with the experimental MAE of 10.5 MJ/m3 [57]. However a generalized-gradient-approximation-with-the-Hubbard-U-parameter calculation with U_{Ce} of 3.0 eV gives a MAE of approximately 9.0 MJ/m3, in good agreement with the experimental value.

The most-remarkable observation of experimental measurements is the increase in the Curie temperature of CeCo5 when it is alloyed with Cu and Fe. We explain this observation using two methods, one more roughly qualitative, the other more quantitative. For the first method, we note that for a local-moment magnetic material, the Curie point is ultimately controlled by the interatomic exchange interactions, which are often determined by an effective
mapping of the first-principles-calculated energies of various magnetic configurations to a Heisenberg-type model. However, the magnetic configurations considered here (with use of the parameters above) all converge instead to the spin-polarized case with all Co spins aligned in the ferromagnetic fashion. These calculations suggest that the magnetism in this material is of itinerant type.

For such a system the calculation of the Curie point is more involved. For this first qualitative approach we therefore limit ourselves to a simple consideration of the magnetic ordering or formation energy—the energy difference \(\Delta E = E_{NM} - E_{FM} \), where \(E_{NM} \) is the energy of a nonmagnetic configuration and \(E_{FM} \) is the energy of the ferromagnetic configuration. While this energy contains contributions from both the \textit{intra-atomic} Hund-rule coupling (which does not determine Curie points) and the \textit{interatomic} exchange coupling (which does determine Curie points), it is plausible that within a given alloy system, such as CeCo\(_{1-x}\)Fe\(_x\)Cu, the \textit{trend} of the Curie point with alloying is generally captured by the \textit{trend} of this energy. For example, the general quenching of 3d-orbital moments in magnetic systems away from the atomic limit indicates, as expected, that the atomic Hund-rule coupling is not the only relevant interaction here.

To get some insight into the Curie temperature, we therefore calculate this energy \(\Delta E \) for CeCo\(_{1-x}\)Fe\(_x\)Cu on a per Co/Fe basis. This, along with the associated magnetic moment, is plotted in Fig. 17 as a function of Fe doping. One observes a substantial ordering-energy increase (from approximately 900 K to approximately 1500 K) with increasing Fe doping from \(x = 0 \) to \(0.3 \), along with a substantial magnetic moment increase. From a theoretical standpoint, it is noteworthy that \(\Delta E \) is as high as 1500 K for \(x = 0.3 \). This large energy suggests the possibility of some local character of the magnetism on the 3d (i.e., Co and Fe) atoms with increased Fe content in CeCo\(_{1-x}\)Fe\(_x\)Cu. A previous theoretical treatment of CeCo\(_5\) [67] found evidence, as we do here, for itinerant character in CeCo\(_5\), so the increased Fe contents in these materials are of both theoretical and experimental interest.

Our second method of calculating the Curie point of this system is more quantitative. While the increase of magnetization and the corresponding magnetic formation energy (Fig. 17) with the addition of Fe atoms to CeCo\(_5\) is generally expected, the observed increase of the Curie temperature \(T_C \) requires a more-detailed explanation. To describe theoretically the dependence of \(T_C \) on the concentration of Fe, we use the traditional mean-field approximation for systems with nonequivalent magnetic atoms in a primitive cell. In this approximation \(T_C \) of a system with \(N \) nonequivalent magnetic atoms is calculated as the largest solution of the equation

\[
\det(T_{nm} - T \delta_{nm}) = 0, \tag{1}
\]

where \(n \) and \(m \) are the indices of the nonequivalent magnetic sublattices and \(T_{nm} = (2/3)J_{mn}^0 \), where \(J_{mn}^0 \) is an effective magnetic exchange interaction of an atom from sublattice \(n \) with all other atoms from the sublattice \(m \). The exchange-coupling parameters \(J_{mn}^0 \) are obtained with the multiple-scattering-formalism expression obtained in Ref. [68] and extensively tested in Ref. [69]. The corresponding dependence on content is described with use of the coherent-potential approximation (see details in Ref. [70]).

The calculations for pure CeCo\(_5\) reveal that \(T_C \) is determined by the strong ferromagnetic nature of the Co-Co interactions. The absolute value of the exchange parameters decays quickly with increasing interatomic distance, so the main contribution to \(T_C \) comes from the interaction between atoms lying within the distance of the two first neighboring shells. The average value of the nearest-neighbor coupling \(J_{Co-Co} \) is approximately 15 meV. The contribution from Ce atoms is weak and negative.

FIG. 17. Total moment as a function of Fe doping (left) and the energy difference between the nonmagnetic state and the ground state (ferromagnetic state) in Kelvins on a per-Co/Fe basis as a function of Fe doping for CeCo\(_{1-x}\)Fe\(_x\)Cu (right).
The obtained MFA value of $T_C = 790$ K in CeCo$_5$ shows the typical overestimation of the experimental T_C in this classical spin approach. The addition of Fe atoms shows an interesting development of exchange coupling. First, we notice the appearance of a strong ferromagnetic Fe-Co coupling, $J_{\text{Fe-Co}} = 21$ meV. Second, the addition of Fe atoms increases the magnetic moments on Co atoms by approximately 0.1 μ_B, with a corresponding increase of Co-Co exchange coupling as well. Overall this effect leads to a nearly 20% increase of T_C, with a maximum of 950 K at $x = 0.2$–0.23. This qualitatively confirms the experimentally observed trend. We find that further addition of Fe atoms is detrimental for the ferromagnetism in these alloys and T_C starts to decrease. Finally, we also find from theory that a large increase of T_C by nearly 35% can be obtained when Ce atoms are replaced by Y atoms in CeCo$_5$ alloys.

B. Multiscale modeling

In this section we present theoretical studies of the hysteretic behavior of Cu- and Ta-doped CeCo$_5$ crystals to better understand the mechanism of coercivity in these systems. The physics of magnetic hysteresis involves multiple length scales and is controlled by both intrinsic and extrinsic properties of magnets. Therefore, our method is based on a multiscale approach that combines first-principles electronic structure calculations, micromagnetic models, and statistical macromagnetic simulations.

The electronic structure calculations describe material behavior on atomic length scales and allow us to evaluate intrinsic properties such as spontaneous magnetization and MAE. We use DFT within the rotationally invariant DFT+U method [66] and the Perdew-Burke-Ernzerhof approximation for the exchange-correlation functional [71]. We use a Hubbard U of 2 eV and $J = 0.8$ eV for Co 3d electrons, which were previously demonstrated to provide a good description of magnetic properties for LaCo$_5$ and YCo$_5$ materials [72]. The Kohn-Sham equations are solved by the projector-augmented-wave method [73] as implemented in the VIENNA AB INITIO SIMULATION PACKAGE [74,75]. We use a $1 \times 1 \times 2$ supercell with respect to the primitive unit cell for CeCo$_5$. For the Brillouin-zone sampling the Monkhorst-Pack scheme [76] is used with a dense $16 \times 16 \times 10$ k mesh. The energy cutoff for the plane-wave expansion is set to 320 eV. The crystal structures are fully relaxed until forces acting on each atom are smaller than 0.01 eV/Å and all stress-tensor elements are smaller than 1 kbar. The MAE is evaluated with use of the force theorem as the total energy difference between states with the magnetization aligned along the [100] and [001] directions.

Figure 18 (top right) shows the calculated spontaneous magnetization and MAE for Ce(Co$_{1-x}$Cu$_x$)$_5$ as a function of Cu content. We assume that the Cu atoms occupy the 3g atomic sites and we chose the lowest-energy atomic configurations that correspond to the Cu atoms occupying the same atomic layers. As seen, the spontaneous magnetization decreases with Cu content since Cu atoms have negligible moments as expected from their 3d^{10} nominal configuration. This is in agreement with the experimental results shown in Fig. 15 (inset). Our calculations show that the MAE has a complex nonmonotonic dependence on Cu content. In particular, whereas small Cu additions decrease the MAE, for larger concentrations the MAE shows a maximum as a function of x. Converting these

![Graphs showing the hysteresis loop of the Ce(Co$_{0.8}$Cu$_{0.2}$)$_5$ system, Calculated spontaneous magnetization and MAE of Ce(Co$_{1-x}$Cu$_x$)$_5$ (Ce$_{16.67}$Co$_{66.67}$Cu$_{16.67}$) as a function of Cu concentration (top right). Coercivity of the Ce(Co$_{0.8}$Cu$_{0.2}$)$_5$ system (i.e., as a function of R_0 and η) (bottom right). The η (R_0) dependence is evaluated for fixed $R_0 = 0.8$ ($\eta = 15\%$) f.u., formula unit.]

FIG. 18. Hysteresis loop of the Ce(Co$_{0.8}$Cu$_{0.2}$)$_5$ system (i.e., Ce$_{16.67}$Co$_{66.67}$Cu$_{16.67}$) calculated with $\eta = 15\%$ and $R_0 = 0.8\delta_B$ (left). The parameter η represents the probability of neighboring blocks to be exchange coupled, while R_0 is the defect size, in the unit of the Bloch-wall thickness δ_B, taken here as 4 nm [36]. Calculated spontaneous magnetization and MAE of Ce(Co$_{1-x}$Cu$_x$)$_5$ (Ce$_{16.67}$Co$_{83.33}(1-x)$Cu$_{83.33}x$) (i.e., as a function of Cu concentration) (top right). Coercivity of the Ce(Co$_{0.8}$Cu$_{0.2}$)$_5$ system (i.e., as a function of R_0 and η) (bottom right). The η (R_0) dependence is evaluated for fixed $R_0 = 0.8$ ($\eta = 15\%$) f.u., formula unit.
calculated MAE and magnetization results to anisotropy fields H_a, we find the following anisotropy fields for $x = 0$, 0.1, 0.2, 0.3, and 0.4, respectively: 166, 93, 131, 338, and 128 kOe. This nonmonotonic H_a behavior is qualitatively consistent with the experimental results for the anisotropy field as a function of Cu content shown in Fig. 12 except that, experimentally, the H_a maximum is observed at lower Cu content (approximately $x = 0.2$ vs $x = 0.3$ for the theory) and the corresponding H_a values differ significantly from the theoretical values. These differences are probably primarily caused by the fact that the configuration of Cu atoms in real samples differs in some respect from the lowest-energy configuration used in the calculations.

To study the hysteresis process, in addition to the knowledge of the intrinsic parameters (magnetic anisotropy and magnetization) as calculated above, we need to also specify the microstructural features of the system at the nanometer and micron length scales. As discussed in previous sections, SEM and STEM measurements indicate that a network of planar defects is present in the single-crystal samples. For the as-grown crystals these defects form Co-enriched and Cu-depleted lamellar regions, which after heat treatment become nucleation points for Ta-rich planar precipitates. Clearly, these extended defects play a crucial role in establishing coercivity in the system since they can efficiently pin the reversed magnetic domains, thus preventing them from expanding over the entire crystal. As seen in Fig. 3, the crystal can be viewed as a collection of blocks (of the size of several microns) that are, at a large degree, magnetically decoupled by the planar defects. In our model we consider an idealized version of such a microstructure in the form of a simple cubic lattice of identical cubic micron-sized Ce(Co$_{1-x}$Cu$_x$)$_5$ blocks. While the actual microstructure “blocks” are generally hexagonal (see Fig. 3), the use of a simple cubic lattice greatly simplifies the calculation and is not expected to drastically change the qualitative features. We assume periodic boundary conditions in a closed magnetic circuit setup so that there is no demagnetization field. Since the decoupling of blocks by the planar defects is not perfect, we introduce the parameter η, which physically represents the probability of neighboring blocks to be exchange coupled.

In addition, the blocks interact via the magnetostatic interaction, which is described with use of the Ewald technique as detailed in Ref. [77]. In a manner similar to the approach in Ref. [78], we assume that each block has a number of magnetically soft defects (e.g., Co precipitates) with exponentially distributed sizes $f(R) = (1/R_0)e^{-R/R_0}$, where R_0 is the characteristic defect size. Assuming well-separated spherical defects, the switching field of each block can be determined by micromagnetic calculations using the intrinsic parameters (magnetic anisotropy and magnetization) calculated from the first-principles calculations above. The hysteresis loop is then calculated by our starting from the saturated state and gradually decreasing the external magnetic field. For each value of the external field, the system magnetization is determined as follows. The total magnetic field acting on each block is evaluated as a sum of the external and magnetostatic contributions. When the total field is lower than the negative switching field of the block, the block magnetization is reversed. Subsequently, all blocks that are exchange coupled to the reversed block also have their magnetization reversed. The process is repeated iteratively until a stable magnetic configuration is achieved.

Figure 18 (left) shows the calculated hysteresis loop for a Ce(Co$_{0.8}$Cu$_{0.2}$)$_5$ system calculated with $\eta = 15\%$ and $R_0 = 0.8\delta_B$, where δ_B is the Bloch-wall thickness of CeCo$_5$ (around 4 nm [36]). As is evident, this choice of parameters results in a rectangular hysteresis loop with a coercivity similar to the measured value for this Co content (see Fig. 15). Therefore, our model is capable of reproducing the experimental results. Figure 18 (bottom right) shows the dependence of the coercivity on the microstructural parameters: η and R_0. We observe that for $R_0 < \delta_B$, R_0 strongly affects the coercivity, while for $R_0 > \delta_B$, the coercivity depends only weakly on R_0. As expected, the coercivity decreases with η. Around $\eta = 20\%$ we observe a change of slope and a much-stronger reduction of coercivity is observed for larger η. These results indicate that there are two possible mechanisms by which Cu doping enhances the coercivity. First, Cu doping may increase the number and thickness of planar defects, resulting in a decrease of η. This is consistent with a scenario in which the defects are precipitates of the Cu-poor 1:5 phase. A second possibility is that the Cu doping reduces the size of the magnetically soft defects in the matrix phase.

VI. CONCLUSIONS

Using a self-flux technique, we synthesize five different single crystals of Ta-, Cu- and/or Fe-substituted CeCo$_5$. They retain a CaCu$_5$ substructure and incorporate small amounts of Ta in the form of “dumbbells” filling the 2e crystallographic sites within the 1D hexagonal channel with the 1a Ce site, whereas Co, Cu, and Fe are statistically distributed among the 2c and 3g crystallographic sites. The as-grown crystals appear to be single phased and homogeneous in composition. Their single crystallinity is confirmed by XRD, SEM, and TEM experiments. However, they also exhibit significant magnetic coercivities that are comparable to those of most anisotropic sintered alnico grades. After the heat treatment (hardening), magnetic characteristics significantly improve. Ta atoms leave the matrix interstices of the as-grown crystals and precipitate in form of coherent laminas, creating the so-called composite crystal. The composite crystal, formed during the heat treatment, contains a 3D array of structural defects within a primarily single-grain single crystal. The mechanism of coercivity is regulated by Cu, and
pinning occurs on the extended 3D defects and structural imperfections that originate from Cu-depleted and Co-enriched lines observed in the as-grown crystals and consequently develop into the regions between Ta-rich precipitates and the matrix in the thermally aged crystals. The structural defects form as a result of a thermodynamic transformation of the matrix material associated with its partial decomposition and/or decreased miscibility during the hardening process. Significant increase of magnetization in the heat-treated samples may be associated either with the transformation of the matrix phase or with the removal of Ta from the matrix. Fe strongly increases both the Curie temperature and magnetization of the system, which is associated with a strong increase in the magnetic ordering energy. The peculiar thermodynamic transformations, which lead to intragranular pinning and a unique coercivity mechanism that does not require the typical processing for the development of extrinsic magnetic properties, could be used to create permanent magnets with lowered processing costs. Further composition-temperature-time optimizations may result in a critical-material-free and cost-efficient gap magnet with energy product 15–16.5 MGOe.

ACKNOWLEDGMENTS

This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. M.C.N. is supported by the Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy. This work was performed at the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

[33] Yoshio Tawara, Tetsuichi Chino, and Yukihito Matsu, Permanent magnets based on (Ce,Sm)(Co,Fe,Cu)2, Appl. Phys. Lett. 33, 674 (1978).

[36] D. Girodin, C. H. Allibert, F. Givord, and R. Lemaire, Phase equilibria in the CeCo3-5CeCu5 system and structural characterization of the (CeCo0.75Cu0.25)3 phases, J. Less Common Met. 110, 149 (1985).

[50] Radovan Černý, Yaroslav Filinchuk, and Stefan Bruehne, Local atomic order in the vicinity of Cu2 dumbbells in TbCu7-type YCu5.56 studied by Bragg and total scattering techniques, Intermetallics 17, 818 (2009).

[52] J. S. Vinogradova, and E. S. Makarov, The crystal structure of Th2Zn17 and U2Zn17, Kristallografiya I, 634 (1956).

[56] Chen Zhou, Frederick E. Pinkerton, and Jan F. Herbst, Formation of TbCu7-type CeFe10Zr0.8 by rapid solidification, J. Alloys. Compd. 569, 6 (2013).

[61] Standard specifications for permanent magnet materials (MMPA standard no. 0100-00).

